Phase Transformations and Martensite Stabilization in Ni2.36Mn0.64Ga High-Temperature Shape Memory Alloy

Article Preview

Abstract:

We report on experimental investigations of a Ni2.36Mn0.64Ga Heusler alloy, which transforms to tetragonal martensite at cooling below Ms ≈ 271°С. The evolution of lattice constants was tracked by in situ neutron diffraction measurements. It was found that the martensite tetragonality c/a gradually decreases during heating from room temperature to austenite transition start temperature As ≈ 272°С. The phenomenon of martensite stabilization was investigated by differential scanning calorimetry utilizing three different protocols of the martensite aging. It was found that the martensite aging at a constant temperature T = 255°С merely shifts the reverse transformation to higher temperatures, while the reverse transformation temperature interval (AfAs) remains the same (≈ 30°C) independently of aging time. On the other hand, a multistep aging at different temperatures starting from T = 255°С not only shifts the reverse transformation temperature, but makes the transformation temperature interval narrower down to AsAf ≈ 10°C.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

117-126

Citation:

Online since:

December 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. Graf, C. Felser, and S.S.P. Parkin, "Simple rules for the understanding of Heusler compounds" Prog. Solid State Chem. 39 (2011) 1.

DOI: 10.1016/j.progsolidstchem.2011.02.001

Google Scholar

[2] A. Sozinov, A.A. Likhachev, N. Lanska, and K. Ullakko, "Giant magnetic-field-induced strain in NiMnGa seven-layered martensitic phase" Appl. Phys. Lett. 80 (2002) 1746.

DOI: 10.1063/1.1458075

Google Scholar

[3] V.A. Chernenko, E. Cesari, V.V. Kokorin, and I.N. Vitenko, "The development of new ferromagnetic shape memory alloys in Ni-Mn-Ga system" Scripta Metal. 33 (1995) 1239.

DOI: 10.1016/0956-716x(95)00370-b

Google Scholar

[4] V.A. Chernenko, V. L'vov, J. Pons, and E. Cesari, "Superelasticity in high-temperature Ni–Mn–Ga alloys" J. Appl. Phys. 93 (2003) 2394.

DOI: 10.1063/1.1539532

Google Scholar

[5] Y.Q. Ma, C.B. Jiang, G. Feng, and H.B. Xu, "Thermal stability of the Ni54Mn25Ga21 Heusler alloy with high temperature transformation" Scripta Mater. 48 (2003) 365.

DOI: 10.1016/s1359-6462(02)00450-5

Google Scholar

[6] H. Xu, Y. Ma, and C. Jiang, "A high-temperature shape-memory alloy Ni54Mn25Ga21" Appl. Phys. Lett. 82 (2003) 3206.

DOI: 10.1063/1.1572540

Google Scholar

[7] V.V. Khovaylo, V.D. Buchelnikov, R. Kainuma, V.V. Koledov, M. Ohtsuka, V.G. Shavrov, T. Takagi, T. Taskaev, and A.N. Vasiliev, "Phase transitions in Ni2+xMn1-xGa with a high Ni excess" Phys. Rev. B 72 (2005) 224408.

DOI: 10.1103/physrevb.73.149901

Google Scholar

[8] J. Ma, I. Karaman, and R.D. Noebe, "High temperature shape memory alloys" Int. Mater. Rev. 55 (2010) 257.

Google Scholar

[9] Y. Yamabe-Mitarai, "TiPd- and TiPt-based high-temperature shape memory alloys: A review on recent advances" Metals 10 (2020) 1531.

DOI: 10.3390/met10111531

Google Scholar

[10] S. Li, D. Cong, W. Xiong, Z. Chen, X. Zhang, Z. Nie, S. Li, R. Li, Y. Wang, Y. Cao, Y. Ren, and Y. Wang, "A low-cost Ni-Mn-Ti-B high-temperature shape memory alloy with extraordinary functional properties" ACS Appl. Mater. Interfaces 13 (2021) 31870.

DOI: 10.1021/acsami.1c07619

Google Scholar

[11] X. Ren and K. Otsuka, "Origin of rubber-like behavior in metal alloys" Nature 389 (1997) 579.

DOI: 10.1038/39277

Google Scholar

[12] K. Otsuka and X. Ren, "Mechanism of martensite aging effects and new aspects" Mater. Sci. Eng. A 312 (2001) 207.

Google Scholar

[13] V. Khovaylo, R. Kainuma, K. Ishida, T. Omori, H. Miki, T. Takagi, and A. Datesman, "New aspects of martensite stabilization in Ni-Mn-Ga high-temperature shape memory alloy" Philos. Mag. 88 (2008) 865.

DOI: 10.1080/14786430801986670

Google Scholar

[14] P.M. Kadletz, Ph. Krooß, Yu.I. Chumlyakov, M.J. Gutmann, W.W. Schmahl, H.J. Maier, and T. Niendorf, "Martensite stabilization in shape memory alloys – Experimental evidence for short-range ordering" Mater. Lett. 159 (2015) 16.

DOI: 10.1016/j.matlet.2015.06.048

Google Scholar

[15] N.A. Río-López, P. Lázpita, D. Salazar, V.I. Petrenko, F. Plazaola, V. Chernenko, J.M. Porro, "Neutron scattering as a powerful tool to investigate magnetic shape memory alloys: a review" Metals 11 (2021) 829.

DOI: 10.3390/met11050829

Google Scholar

[16] А.М. Balagurov, "High resolution Fourier diffraction at the IBR-2 reactor" Neutron News 16 (2005) 8.

DOI: 10.1080/10446830500454346

Google Scholar

[17] А.M. Balagurov, I.S. Golovin, I.A. Bobrikov, V.V. Palacheva, S.V. Sumnikov, and V.B. Zlokazov, "Comparative study of structural phase transitions in bulk and powdered Fe-27Ga alloy by real-time neutron thermodiffractometry" J. Appl. Cryst. 50 (2017) 198.

DOI: 10.1107/s1600576716020045

Google Scholar

[18] S. Banik, R. Ranjan, A. Chakrabarti, S. Bhardwaj, N.P. Lalla, A.M. Awasthi, V. Sathe, D.M. Phase, P.K. Mukhopadhyay, D. Pandey, and S.R. Barman, "Structural studies of Ni2+xMn1-xGa by powder x-ray diffraction and total energy calculations" Phys. Rev B 75 (2007) 104107.

DOI: 10.1103/physrevb.75.104107

Google Scholar

[19] M. Wojdyr, "Fityk: a general-purpose peak fitting program" J. Appl. Cryst. 43 (2010) 1126.

DOI: 10.1107/s0021889810030499

Google Scholar