CFD Analysis of Perforated Plates and Open-Cell Materials Aerodynamics

Article Preview

Abstract:

In this paper, a numerical study of fluid flow through perforated panels with square holes and open-cell material with cubic cells is presented. Structures with a wide variety of porosities (0.15<φ<0.94) and Reynolds numbers (0.01<Re<6000) are studied. Among the various outcomes obtained, the results indicate that pressure gradient vs Reynolds number exhibits three different forms of variation, including linear (Re<1), nonlinear (1≤Re<4000), and one where the pressure gradient is virtually constant with the Reynolds number (Re≥4000). The results were provided in terms of loss factor, but also of intrinsic permeability and the Forchheimer coefficient. Relationships that connect porosity to the loss factor, intrinsic permeability, and Forchheimer coefficient are also presented. These findings may prove useful in better understanding the flow behaviors in perforated panels and cell metal foams, which have a wide range of applications.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

81-90

Citation:

Online since:

December 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. Li, D. Chang, B. Liu, Appl. Acoust. 127 (2017) 316–323.

Google Scholar

[2] A.F. Miguel, A. Silva, Applied Energy 87 (2010) 836-842.

Google Scholar

[3] V. Babak, T. Babak, L. Kholpanov, V.A. Malyusov, J. Eng. Phys. 50 (1986) 330–335.

Google Scholar

[4] R. Liu, D. Ting, J. Fluids Eng. ASME 129 (2007) 1164–1171.

Google Scholar

[5] D. Allori, G. Bartoli, A. F. Miguel, Int. J. Fluid Mech. Res. 39 (2012) 136–148.

Google Scholar

[6] D. Allori, G. Bartoli, A. F. Miguel, 7th International Conference on Diffusion in Solids and Liquids (2011), 127.

Google Scholar

[7] A.F. Miguel, Journal of Porous Media 22 (2019)1439–1448.

Google Scholar

[8] Y. Bayazit, E. M. Sparrow, D. D. Joseph, Int. J. Therm. Sci. 85 (2014) 104–111.

Google Scholar

[9] S. Yavuzkurt, G. L. Catchen, ASME International Mechanical Engineering Congress and Exposition 37165 (2003) 435–440.

Google Scholar

[10] E. Özahi, Flow Meas. Instrum. 43 (2015) 6–13.

Google Scholar

[11] Y. Bae, Y.I. Kim, Chem. Eng. Sci. 149 (2016) 78–87.

Google Scholar

[12] A.L. Teh, K.W. Chin, E.K. Teh, W.M. Chin, C.M. Chia, J.J. Foo, Chem. Eng. Res. Des. 100 (2015) 57–71.

Google Scholar

[13] Y. Bayazit, E.M. Sparrow, D.D. Joseph, Int. J. Therm. Sci. 85 (2014) 104–111.

Google Scholar

[14] H.F. Abbasov, Int. J. Thermophys. 41 (2020) 164.

Google Scholar

[15] L. Li, B. Han, S. Y. He, Z. Y. Zhao, R. Zhang, Q. C. Zhang, T. J. Lu, Mater. Des. 164 (2019) 107546.

Google Scholar

[16] A.H. Khalid, M. H. Ismail, H. B. A. Kasim, H. F. Pahroraji, M. A. B. Zainol, A. M. M. B. M. Azaiauddin, IOP Conf. Ser.: Mater. Sci. Eng. 834 (2020) 012029.

DOI: 10.1088/1757-899x/834/1/012029

Google Scholar

[17] H. Yang, Y. Li, B. Ma, Y. Zhu, Materials 14 (2021) 3153.

Google Scholar

[18] ANSYS FLUENT 16.2, User's Guide. www.fluent.com.

Google Scholar

[19] M.B. Acikgoz, B. Akay, A.F. Miguel, M. Aydin, Defect and Diffusion Forum 312-315 (2011) 865-870.

DOI: 10.4028/www.scientific.net/ddf.312-315.865

Google Scholar

[20] I.B. Celik, U. Ghia, P.J. Roache, C.J. Freitas, H. Coleman, P.E. Raad, J. Fluids Eng. 130 (2008) 078001.

Google Scholar

[21] A. F. Miguel, Thermal Science 16 (2012) 167-176.

Google Scholar

[22] A. Koponen, D. Kandhai, E. Hellen, Phys. Rev. Lett. 80 (1998) 716.

Google Scholar

[23] A. F. Miguel, Energy and Buildings 28 (1998) 63-69.

Google Scholar