[1]
L. Schlapbach and A. Zuttel, Hydrogen-Storage Materials for Mobile Applications. Nature (London) 414 (2001) 353-358.
DOI: 10.1038/35104634
Google Scholar
[2]
V. G. Gavriljuk, V. M. Shyvaniuk and S. M. Teus, Hydrogen in Engineering Metallic Materials. From Atomic-Level Interactions to Mechanical Properties, Springer, 2022.
DOI: 10.1007/978-3-030-98550-9
Google Scholar
[3]
M. Pozzo, D. Alfe, Hydrogen dissociation and diffusion on transition metal (= Ti, Zr, V, Fe, Ru, Co, Rh, Ni, Pd, Cu, Ag)-doped Mg(0001) surfaces, Int. J. Hydrogen Energy 34 (2009) 1922-1930.
DOI: 10.1016/j.ijhydene.2008.11.109
Google Scholar
[4]
X. Li, X. Ma, J. Zhang, E. Akiyama, Y. Wang, X. Song, Review of Hydrogen Embrittlement in metals: Hydrogen Diffusion, Hydrogen Characterisation, Hydrogen Embrittlement Mechanism and Prevention. Acta Metallurgica Sinica (English Letters) 33 (2020) 759–773.
DOI: 10.1007/s40195-020-01039-7
Google Scholar
[5]
Y. Ogawa, H. Matsunaga, J. Yamabe, M. Yoshikawa, S. Matsuoka, Fatigue limit of carbon and CrMo steels as a small fatigue crack threshold in high-pressure hydrogen gas. International Journal of Hydrogen Energy. 43 (2018) 20133-20142
DOI: 10.1016/j.ijhydene.2018.09.026
Google Scholar
[6]
T. Zhao, Z. Liu, X. Xu, Y. Li, C. Du, X. Liu, Interaction between hydrogen and cyclic stress and its role in fatigue damage mechanism, Corros. Sci. 157 (2019) 146-156
DOI: 10.1016/j.corsci.2019.05.028
Google Scholar
[7]
A.V. Gapontsev, V.V. Kondratev, Diffusion of hydrogen in disordered metals and alloys. Physics-Uspekhi 46 (2003) 1077.
DOI: 10.1070/pu2003v046n10abeh001660
Google Scholar
[8]
R.A. Andrievski, Hydrogen in Metallic Nanostructures, Materials Science Forum. 555 (2007) 327-334
DOI: 10.4028/www.scientific.net/msf.555.327
Google Scholar
[9]
G.M. Poletaev, I.V. Zorya, D.V. Novoselova, M. D. Starostenkov. Molecular dynamics simulation of hydrogen atoms diffusion in crystal lattice of fcc metals, Int. J. Mater. Res. (formerly Z. Metallkd.) 108 (2017) 785-790.
DOI: 10.3139/146.111556
Google Scholar
[10]
H. Wipf, Hydrogen in Metals III: properties and Applications (Topics in Applied Physics, 73), edited by H. Wipf, Springer, Berlin, 1997
DOI: 10.1007/BFb0103398
Google Scholar
[11]
G. Alefeld and J. Völkl, Hydrogen in Metals I: Basic Properties: 1 (Topics in Applied Physics, 28), edited by G. Alefeld and J. Völkl, Springer-Verlag, Berlin, 1978.
DOI: 10.1007/3-540-08705-2
Google Scholar
[12]
H. Hagi. Diffusion Coefficient of Hydrogen in Iron without Trapping by Dislocations and Impurities, Materials Transactions, JIM 35(1994) 112-117.
DOI: 10.2320/matertrans1989.35.112
Google Scholar
[13]
H. Kimizuka, H. Mori, and Sh. Ogata. Effect of temperature on fast hydrogen diffusion in iron: A path-integral quantum dynamics approach, Phys. Rev. B. 83 (2011) 094110.
DOI: 10.1103/physrevb.83.094110
Google Scholar
[14]
S. Bobyr, Statistical model of impurity atoms diffusion in the crystal lattice of metals and its application for calculating the diffusion coefficients of hydrogen and carbon atoms in iron, Phys. of the Solid State. 63(3) (2021) 420-424.
DOI: 10.1134/S1063783421030033
Google Scholar
[15]
J. L. Meseguer-Valdenebro. A. Portoles, E. Martinez-Conesa, Analytical determination and validation by finite elements method of hydrogen weld of carbon Steel after post-heating. Thermal Science 25, 5B (2021) 3789-3799.
DOI: 10.2298/tsci200517297m
Google Scholar
[16]
J. Sanchez, J. Fullea, C. Andrade, and P. L. de Andres, Hydrogen in α-iron stress and diffusion, Phys. Rev. B 78 014113 (2008)
DOI: 10.1103/PhysRevB.78.014113
Google Scholar
[17]
E. M. McIntosh, K. T. Wikfeldt, J. Ellis, A. Michaelides, W. Allison, Quantum effects in the diffusion of hydrogen on Ru(0001), J. Phys. Chem. Lett. 4 (2013) 1565– 1569
DOI: 10.1021/jz400622v
Google Scholar
[18]
A. Ramasubramaniam, M. Itakura, E. A. Carter, Interatomic potentials for hydrogen in α -iron based on density functional theory, Phys. Rev. B 79 (2009) 174101
DOI: 10.1103/physrevb.81.099902
Google Scholar
[19]
A. Castedo, J. Sanchez, J. Fullea, M. C. Andrade, and P. L. de Andres, Ab initio study of the cubic-to-hexagonal phase transition promoted by interstitial hydrogen in iron, Phys. Rev. B 84 094101 (2011).
DOI: 10.1103/physrevb.84.094101
Google Scholar
[20]
V. Olden, A. Saai, L. Jemblie, R. Johnsen. FE simulation of hydrogen diffusion in duplex stainless steel, International journal of hydrogen energy. 39 (2014) 1156-1163
DOI: 10.1016/j.ijhydene.2013.10.101
Google Scholar
[21]
D.E. Jiang, E.A. Carter. Diffusion of interstitial hydrogen into and through bсc Fe from first principles, Phys. Rev. B. 70 (2004) 064102
DOI: 10.1103/PhysRevB.70.064102
Google Scholar
[22]
T. Mueller, A. Hernandez, C. Wang, Machine learning for interatomic potential models, J. Chem. Phys. 152 (2020) 050902
DOI: 10.1063/1.5126336
Google Scholar
[23]
H. Kimizuka, S. Ogata, M. Shiga. Mechanism of fast lattice diffusion of hydrogen in palladium: Interplay of quantum fluctuations and lattice strain, Phys. Rev. B 97 (2018) 014102
DOI: 10.1103/PhysRevB.97.014102
Google Scholar
[24]
H.E. Sauceda, L.E. Galvez-Gonzalez, S. Chmiela, L.O. Paz-Borbon, K.-R. Müller, A.Tkatchenko, BIGDML—Towards accurate quantum machine learning force fields for materials. Nat. Commun. 13(1) (2022) 3733
DOI: 10.1038/s41467-022-31093-x
Google Scholar
[25]
H. Kwon, M. Shiga, H. Kimizuka, T. Oda, Accurate description of hydrogen diffusivity in bcc metals using machine-learning moment tensor potentials and path-integral methods, Acta Materialia, 247 (2023) 118739
DOI: 10.1016/j.actamat.2023.118739
Google Scholar
[26]
A.V. Shapeev. Moment tensor potentials: A class of systematically improvable interatomic potentials, Multiscale Model. Simul. 14 (2016) 1153–1173.
DOI: 10.1137/15m1054183
Google Scholar
[27]
Di Stefano, D. Mrovec, M. Elsässer, First-principles investigation of quantum mechanical effects on the diffusion of hydrogen in iron and nickel. Phys. Rev. B: Condens. Matter Mater. Phys. 92 (2015) 224301.
DOI: 10.1103/physrevb.92.224301
Google Scholar
[28]
J. Cao, G.J. Martyna, Adiabatic path integral molecular dynamics methods. II. Algorithms, J. Chem. Phys. 104 (1996) 2028–2035.
DOI: 10.1063/1.470959
Google Scholar
[29]
I.R. Craig, D.E. Manolopoulos, Quantum statistics and classical mechanics: Real time correlation functions from ring polymer molecular dynamics, J. Chem. Phys. 121 (2004) 3368–3373.
DOI: 10.1063/1.1777575
Google Scholar
[30]
B.J. Braams, D.E. Manolopoulos, On the short-time limit of ring polymer molecular dynamics, J. Chem. Phys. 125 (2006) 124105
DOI: 10.1063/1.2357599
Google Scholar
[31]
A. Witt, S.D. Ivanov, M. Shiga, H. Forbert, D. Marx, On the applicability of centroid and ring polymer path integral molecular dynamics for vibrational spectroscopy. J. Chem. Phys. 130 (2009) 194510.
DOI: 10.1063/1.3125009
Google Scholar
[32]
M.J. Gillan, Quantum simulation of hydrogen in metals. Phys. Rev. Lett. 58 (1987) 563–566.
DOI: 10.1103/physrevlett.58.563
Google Scholar
[33]
E. Pollak, Variational transition state theory for reactions in condensed phases, J. Chem. Phys. 95 (1991) 533–539
DOI: 10.1063/1.461453
Google Scholar
[34]
G.K. Schenter, G. Mills, H. Jonsson, Reversible work-based quantum transition state theory, J. Chem. Phys. 101 (1994) 8964–8971.
DOI: 10.1063/1.468447
Google Scholar
[35]
J.O. Richardson, S.C. Althorpe, Ring-polymer molecular dynamics rate-theory in the deep-tunneling regime: Connection with semiclassical instanton theory. J. Chem. Phys. 131 (2009) 214106.
DOI: 10.1063/1.3267318
Google Scholar
[36]
G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci. 6 (1996) 15–50.
DOI: 10.1016/0927-0256(96)00008-0
Google Scholar
[37]
G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B. 54 (1996) 11169–11186.
DOI: 10.1103/physrevb.54.11169
Google Scholar
[38]
J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77 (1996) 3865–3868.
DOI: 10.1103/physrevlett.77.3865
Google Scholar
[39]
T. Yoshikawa, T. Takayanagi, H. Kimizuka, M. Shiga, Quantum–Thermal Crossover of Hydrogen and Tritium Diffusion in α-Iron. J. Phys. Chem., 2012, 116, 23113– 23119.
DOI: 10.1021/jp307660e
Google Scholar
[40]
Y. A. Kashlev, Three regimes of diffusion migration of hydrogen atoms in metals, Theor. Math. Phys. 145 (2005) 1590–1603.
DOI: 10.1007/s11232-005-0185-8
Google Scholar
[41]
S. Bobyr, J. Odqvist, Some Theoretical Aspects of Hydrogen Diffusion in BCC Metals at Low Temperatures, International Journal of Recent advances in Physics. 12(1/2) (2023) 13-25
Google Scholar
[42]
M. Nagano, Y. Hayashi, N. Ohtani, M. Isshiki, K. Igaki, Diffusion of Hydrogen and Deuterium in High Purity Iron Between 222 and 322 K. Trans. Jpn. Inst. Met. 22 (1981) 423–429.
DOI: 10.2320/matertrans1960.22.423
Google Scholar
[43]
K. Kiuchi, R.B. McLellan, The solubility and diffusivity of hydrogen in well annealed and deformed iron. Acta Metall. 31 (1983) 961–984.
DOI: 10.1016/0001-6160(83)90192-x
Google Scholar
[44]
Y. Hayashi, H. Hagi, A. Tahara, Diffusion Coefficients of Hydrogen and Deuterium in Iron Determined by Permeation with Gas, Ion and Electrochemical Charging, Zeitschrift Fur Phys. Chem. 164 (1989) 815–820
DOI: 10.1524/zpch.1989.164.Part_1.0815
Google Scholar
[45]
R. Messer, A.Blessing, S. Dais, at al., Nuclear Magnetic Resonance Studies of Hydrogen Diffusion, Trapping, and Site Occupation in Metals. Z. Phys. Chem.1986, 61– 119.
DOI: 10.1524/zpch.1986.1986.suppl_2.061
Google Scholar
[46]
Zh. Qi, J. Volkl, R. Lasser, H. Wenzl, Tritium diffusion in V, Nb and Ta, J. of Phys. F: Met. Phys. 13(10) (1983) 2053–2062
DOI: 10.1088/0305-4608/13/10/015
Google Scholar
[47]
H. Wipf, G. Alefeld, Diffusion coefficient and heat of transport of H and D in niobium below room temperature, Phys. Status Solidi (a). 23(1) (1974) 175–186
DOI: 10.1002/pssa.2210230119
Google Scholar
[48]
V. B. Vykhodets, O. A. Nefedova, S. I. Obukhov, T. E. Kurennykh, S.E. Danilov, E.V. Vykhodets, Application of the nuclear reaction analysis online technique to study the diffusion of deuterium in metals. JETP Lett. 10(2018) 211– 215.
DOI: 10.1134/s0021364018040148
Google Scholar
[49]
V. Vykhodets, O. Nefedova, T. Kurennykh, E. Vykhodets, First Observation of Quantum Diffusion in Non-Cubic Metal: Deuterium Diffusion in In, Metals 13(2) (2023) 394
DOI: 10.3390/met13020394
Google Scholar
[50]
V. Vykhodets, O. Nefedova, T. Kurennykh, S . Obukhov, E. Vykhodets, Debye Temperature and Quantum Diffusion of Hydrogen in Body-Centered Cubic Metals. ACS Omega. 7, 10 (2022) 8385–8390.
DOI: 10.1021/acsomega.1c05902
Google Scholar
[51]
W. Fang, J.O. Richardson, J. Chen, X.Z. Li, A. Michaelides, Simultaneous Deep Tunneling and Classical Hopping for Hydrogen Diffusion on Metals, Phys. Rev. Lett. 119 (2017), 126001.
DOI: 10.1103/physrevlett.119.126001
Google Scholar
[52]
R. Sherman, H.K. Birnbaum, Hydrogen permeation and diffusion in niobium, Metall. Trans. A. 14 (1983) 203–210.
DOI: 10.1007/bf02651617
Google Scholar
[53]
H. Hagi, Y. Hayashi, N. Ohtani, Diffusion Coefficient of Hydrogen in Pure Iron between 230 and 300 K, Trans. Japan Inst. Met. 20 (1979) 349–357.
DOI: 10.2320/matertrans1960.20.349
Google Scholar
[54]
G. Matusiewicz, H.K. Birnbaum, The isotope effect for the diffusion of hydrogen in niobium, J. Phys. F Met. Phys. 7 (1977) 2285–2289.
DOI: 10.1088/0305-4608/7/11/009
Google Scholar
[55]
R. Cantelli, F.M. Mazzolai, M. Nuovo, Internal Friction due to Long-Range Diffusion of Hydrogen in Niobium (Gorsky Effect), Phys. Status Solidi. 34 (1969) 597–600.
DOI: 10.1002/pssb.19690340221
Google Scholar
[56]
C.P. Flynn, A.M. Stoneham, Quantum Theory of Diffusion with Application to Light Interstitials in Metals, Phys. Rev. B. 1 (1970) 3966–3978.
DOI: 10.1103/physrevb.1.3966
Google Scholar
[57]
A. M. Stoneham, Non-classical diffusion processes, J. Nucl. Mater. 69–70 (1978) 109– 116
DOI: 10.1016/0022-3115(78)90239-8
Google Scholar
[58]
G.K. Schenter, G. Mills, H. Jonsson, Reversible work-based quantum transition state theory, J. Chem. Phys. 101 (1994) 8964–8971.
DOI: 10.1063/1.468447
Google Scholar
[59]
D. Marx, M. Parrinello, Ab initio path integral molecular dynamics: Basic ideas, J. Chem. Phys. 104 (1996) 4077–4082
DOI: 10.1063/1.471221
Google Scholar
[60]
P. G. Sundell, Wahnström, G. Activation Energies for Quantum Diffusion of Hydrogen in Metals and on Metal Surfaces using Delocalized Nuclei within the Density-Functional Theory. Phys. Rev. Lett. 92 (2004) 155901
DOI: 10.1103/PhysRevLett.92.155901
Google Scholar
[61]
D. Emin, M. I. Baskes, W. D. Wilson, Small-polaronic diffusion of light interstitials in bcc metals. Phys. Rev. Lett. 42 (1979) 791−794.
DOI: 10.1103/physrevlett.42.791
Google Scholar