Statistical Model of Hydrogen Diffusion in BCC Metals

Article Preview

Abstract:

The purpose of this work is developing of the statistical model of hydrogen diffusion in the crystal lattice of BCC metals with an estimate of the contribution of quantum effects and deviations from the Arrhenius equation. The values of the statistical model calculations of H diffusion coefficients in Fe, V, Nb and Ta are in good agreement with the experimental data. The statistical model can also explain deviations from the Arrhenius equation at temperatures 300-500 K in Fe and Nb. The downward deviation of the diffusion coefficient at 300K can be explained by the fact that the statistical model does not consider the tunneling effect at temperatures below 300K. It was suggested that thermally activated fast tunnelling transition of hydrogen atoms through the potential barrier at temperatures below 500 K provides an almost free movement of H atoms in the α-Fe and V. Using the statistical model allows for the prediction of the diffusion coefficient for H in BCC metals at intermediate temperatures.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

33-44

Citation:

Online since:

December 2023

Funder:

The publication of this article was funded by the KTH Royal Institute of Technology 10.13039/501100004270

Export:

Share:

Citation:

* - Corresponding Author

[1] L. Schlapbach and A. Zuttel, Hydrogen-Storage Materials for Mobile Applications. Nature (London) 414 (2001) 353-358.

DOI: 10.1038/35104634

Google Scholar

[2] V. G. Gavriljuk, V. M. Shyvaniuk and S. M. Teus, Hydrogen in Engineering Metallic Materials. From Atomic-Level Interactions to Mechanical Properties, Springer, 2022.

DOI: 10.1007/978-3-030-98550-9

Google Scholar

[3] M. Pozzo, D. Alfe, Hydrogen dissociation and diffusion on transition metal (= Ti, Zr, V, Fe, Ru, Co, Rh, Ni, Pd, Cu, Ag)-doped Mg(0001) surfaces, Int. J. Hydrogen Energy 34 (2009) 1922-1930.

DOI: 10.1016/j.ijhydene.2008.11.109

Google Scholar

[4] X. Li, X. Ma, J. Zhang, E. Akiyama, Y. Wang, X. Song, Review of Hydrogen Embrittlement in metals: Hydrogen Diffusion, Hydrogen Characterisation, Hydrogen Embrittlement Mechanism and Prevention. Acta Metallurgica Sinica (English Letters) 33 (2020) 759–773.

DOI: 10.1007/s40195-020-01039-7

Google Scholar

[5] Y. Ogawa, H. Matsunaga, J. Yamabe, M. Yoshikawa, S. Matsuoka, Fatigue limit of carbon and CrMo steels as a small fatigue crack threshold in high-pressure hydrogen gas. International Journal of Hydrogen Energy. 43 (2018) 20133-20142

DOI: 10.1016/j.ijhydene.2018.09.026

Google Scholar

[6] T. Zhao, Z. Liu, X. Xu, Y. Li, C. Du, X. Liu, Interaction between hydrogen and cyclic stress and its role in fatigue damage mechanism, Corros. Sci. 157 (2019) 146-156

DOI: 10.1016/j.corsci.2019.05.028

Google Scholar

[7] A.V. Gapontsev, V.V. Kondratev, Diffusion of hydrogen in disordered metals and alloys. Physics-Uspekhi 46 (2003) 1077.

DOI: 10.1070/pu2003v046n10abeh001660

Google Scholar

[8] R.A. Andrievski, Hydrogen in Metallic Nanostructures, Materials Science Forum. 555 (2007) 327-334

DOI: 10.4028/www.scientific.net/msf.555.327

Google Scholar

[9] G.M. Poletaev, I.V. Zorya, D.V. Novoselova, M. D. Starostenkov. Molecular dynamics simulation of hydrogen atoms diffusion in crystal lattice of fcc metals, Int. J. Mater. Res. (formerly Z. Metallkd.) 108 (2017) 785-790.

DOI: 10.3139/146.111556

Google Scholar

[10] H. Wipf, Hydrogen in Metals III: properties and Applications (Topics in Applied Physics, 73), edited by H. Wipf, Springer, Berlin, 1997

DOI: 10.1007/BFb0103398

Google Scholar

[11] G. Alefeld and J. Völkl, Hydrogen in Metals I: Basic Properties: 1 (Topics in Applied Physics, 28), edited by G. Alefeld and J. Völkl, Springer-Verlag, Berlin, 1978.

DOI: 10.1007/3-540-08705-2

Google Scholar

[12] H. Hagi. Diffusion Coefficient of Hydrogen in Iron without Trapping by Dislocations and Impurities, Materials Transactions, JIM 35(1994) 112-117.

DOI: 10.2320/matertrans1989.35.112

Google Scholar

[13] H. Kimizuka, H. Mori, and Sh. Ogata. Effect of temperature on fast hydrogen diffusion in iron: A path-integral quantum dynamics approach, Phys. Rev. B. 83 (2011) 094110.

DOI: 10.1103/physrevb.83.094110

Google Scholar

[14] S. Bobyr, Statistical model of impurity atoms diffusion in the crystal lattice of metals and its application for calculating the diffusion coefficients of hydrogen and carbon atoms in iron, Phys. of the Solid State. 63(3) (2021) 420-424.

DOI: 10.1134/S1063783421030033

Google Scholar

[15] J. L. Meseguer-Valdenebro. A. Portoles, E. Martinez-Conesa, Analytical determination and validation by finite elements method of hydrogen weld of carbon Steel after post-heating. Thermal Science 25, 5B (2021) 3789-3799.

DOI: 10.2298/tsci200517297m

Google Scholar

[16] J. Sanchez, J. Fullea, C. Andrade, and P. L. de Andres, Hydrogen in α-iron stress and diffusion, Phys. Rev. B 78 014113 (2008)

DOI: 10.1103/PhysRevB.78.014113

Google Scholar

[17] E. M. McIntosh, K. T. Wikfeldt, J. Ellis, A. Michaelides, W. Allison, Quantum effects in the diffusion of hydrogen on Ru(0001), J. Phys. Chem. Lett. 4 (2013) 1565– 1569

DOI: 10.1021/jz400622v

Google Scholar

[18] A. Ramasubramaniam, M. Itakura, E. A. Carter, Interatomic potentials for hydrogen in α -iron based on density functional theory, Phys. Rev. B 79 (2009) 174101

DOI: 10.1103/physrevb.81.099902

Google Scholar

[19] A. Castedo, J. Sanchez, J. Fullea, M. C. Andrade, and P. L. de Andres, Ab initio study of the cubic-to-hexagonal phase transition promoted by interstitial hydrogen in iron, Phys. Rev. B 84 094101 (2011).

DOI: 10.1103/physrevb.84.094101

Google Scholar

[20] V. Olden, A. Saai, L. Jemblie, R. Johnsen. FE simulation of hydrogen diffusion in duplex stainless steel, International journal of hydrogen energy. 39 (2014) 1156-1163

DOI: 10.1016/j.ijhydene.2013.10.101

Google Scholar

[21] D.E. Jiang, E.A. Carter. Diffusion of interstitial hydrogen into and through bсc Fe from first principles, Phys. Rev. B. 70 (2004) 064102

DOI: 10.1103/PhysRevB.70.064102

Google Scholar

[22] T. Mueller, A. Hernandez, C. Wang, Machine learning for interatomic potential models, J. Chem. Phys. 152 (2020) 050902

DOI: 10.1063/1.5126336

Google Scholar

[23] H. Kimizuka, S. Ogata, M. Shiga. Mechanism of fast lattice diffusion of hydrogen in palladium: Interplay of quantum fluctuations and lattice strain, Phys. Rev. B 97 (2018) 014102

DOI: 10.1103/PhysRevB.97.014102

Google Scholar

[24] H.E. Sauceda, L.E. Galvez-Gonzalez, S. Chmiela, L.O. Paz-Borbon, K.-R. Müller, A.Tkatchenko, BIGDML—Towards accurate quantum machine learning force fields for materials. Nat. Commun. 13(1) (2022) 3733

DOI: 10.1038/s41467-022-31093-x

Google Scholar

[25] H. Kwon, M. Shiga, H. Kimizuka, T. Oda, Accurate description of hydrogen diffusivity in bcc metals using machine-learning moment tensor potentials and path-integral methods, Acta Materialia, 247 (2023) 118739

DOI: 10.1016/j.actamat.2023.118739

Google Scholar

[26] A.V. Shapeev. Moment tensor potentials: A class of systematically improvable interatomic potentials, Multiscale Model. Simul. 14 (2016) 1153–1173.

DOI: 10.1137/15m1054183

Google Scholar

[27] Di Stefano, D. Mrovec, M. Elsässer, First-principles investigation of quantum mechanical effects on the diffusion of hydrogen in iron and nickel. Phys. Rev. B: Condens. Matter Mater. Phys. 92 (2015) 224301.

DOI: 10.1103/physrevb.92.224301

Google Scholar

[28] J. Cao, G.J. Martyna, Adiabatic path integral molecular dynamics methods. II. Algorithms, J. Chem. Phys. 104 (1996) 2028–2035.

DOI: 10.1063/1.470959

Google Scholar

[29] I.R. Craig, D.E. Manolopoulos, Quantum statistics and classical mechanics: Real time correlation functions from ring polymer molecular dynamics, J. Chem. Phys. 121 (2004) 3368–3373.

DOI: 10.1063/1.1777575

Google Scholar

[30] B.J. Braams, D.E. Manolopoulos, On the short-time limit of ring polymer molecular dynamics, J. Chem. Phys. 125 (2006) 124105

DOI: 10.1063/1.2357599

Google Scholar

[31] A. Witt, S.D. Ivanov, M. Shiga, H. Forbert, D. Marx, On the applicability of centroid and ring polymer path integral molecular dynamics for vibrational spectroscopy. J. Chem. Phys. 130 (2009) 194510.

DOI: 10.1063/1.3125009

Google Scholar

[32] M.J. Gillan, Quantum simulation of hydrogen in metals. Phys. Rev. Lett. 58 (1987) 563–566.

DOI: 10.1103/physrevlett.58.563

Google Scholar

[33] E. Pollak, Variational transition state theory for reactions in condensed phases, J. Chem. Phys. 95 (1991) 533–539

DOI: 10.1063/1.461453

Google Scholar

[34] G.K. Schenter, G. Mills, H. Jonsson, Reversible work-based quantum transition state theory, J. Chem. Phys. 101 (1994) 8964–8971.

DOI: 10.1063/1.468447

Google Scholar

[35] J.O. Richardson, S.C. Althorpe, Ring-polymer molecular dynamics rate-theory in the deep-tunneling regime: Connection with semiclassical instanton theory. J. Chem. Phys. 131 (2009) 214106.

DOI: 10.1063/1.3267318

Google Scholar

[36] G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci. 6 (1996) 15–50.

DOI: 10.1016/0927-0256(96)00008-0

Google Scholar

[37] G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B. 54 (1996) 11169–11186.

DOI: 10.1103/physrevb.54.11169

Google Scholar

[38] J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77 (1996) 3865–3868.

DOI: 10.1103/physrevlett.77.3865

Google Scholar

[39] T. Yoshikawa, T. Takayanagi, H. Kimizuka, M. Shiga, Quantum–Thermal Crossover of Hydrogen and Tritium Diffusion in α-Iron. J. Phys. Chem., 2012, 116, 23113– 23119.

DOI: 10.1021/jp307660e

Google Scholar

[40] Y. A. Kashlev, Three regimes of diffusion migration of hydrogen atoms in metals, Theor. Math. Phys. 145 (2005) 1590–1603.

DOI: 10.1007/s11232-005-0185-8

Google Scholar

[41] S. Bobyr, J. Odqvist, Some Theoretical Aspects of Hydrogen Diffusion in BCC Metals at Low Temperatures, International Journal of Recent advances in Physics. 12(1/2) (2023) 13-25

Google Scholar

[42] M. Nagano, Y. Hayashi, N. Ohtani, M. Isshiki, K. Igaki, Diffusion of Hydrogen and Deuterium in High Purity Iron Between 222 and 322 K. Trans. Jpn. Inst. Met. 22 (1981) 423–429.

DOI: 10.2320/matertrans1960.22.423

Google Scholar

[43] K. Kiuchi, R.B. McLellan, The solubility and diffusivity of hydrogen in well annealed and deformed iron. Acta Metall. 31 (1983) 961–984.

DOI: 10.1016/0001-6160(83)90192-x

Google Scholar

[44] Y. Hayashi, H. Hagi, A. Tahara, Diffusion Coefficients of Hydrogen and Deuterium in Iron Determined by Permeation with Gas, Ion and Electrochemical Charging, Zeitschrift Fur Phys. Chem. 164 (1989) 815–820

DOI: 10.1524/zpch.1989.164.Part_1.0815

Google Scholar

[45] R. Messer, A.Blessing, S. Dais, at al., Nuclear Magnetic Resonance Studies of Hydrogen Diffusion, Trapping, and Site Occupation in Metals. Z. Phys. Chem.1986, 61– 119.

DOI: 10.1524/zpch.1986.1986.suppl_2.061

Google Scholar

[46] Zh. Qi, J. Volkl, R. Lasser, H. Wenzl, Tritium diffusion in V, Nb and Ta, J. of Phys. F: Met. Phys. 13(10) (1983) 2053–2062

DOI: 10.1088/0305-4608/13/10/015

Google Scholar

[47] H. Wipf, G. Alefeld, Diffusion coefficient and heat of transport of H and D in niobium below room temperature, Phys. Status Solidi (a). 23(1) (1974) 175–186

DOI: 10.1002/pssa.2210230119

Google Scholar

[48] V. B. Vykhodets, O. A. Nefedova, S. I. Obukhov, T. E. Kurennykh, S.E. Danilov, E.V. Vykhodets, Application of the nuclear reaction analysis online technique to study the diffusion of deuterium in metals. JETP Lett. 10(2018) 211– 215.

DOI: 10.1134/s0021364018040148

Google Scholar

[49] V. Vykhodets, O. Nefedova, T. Kurennykh, E. Vykhodets, First Observation of Quantum Diffusion in Non-Cubic Metal: Deuterium Diffusion in In, Metals 13(2) (2023) 394

DOI: 10.3390/met13020394

Google Scholar

[50] V. Vykhodets, O. Nefedova, T. Kurennykh, S . Obukhov, E. Vykhodets, Debye Temperature and Quantum Diffusion of Hydrogen in Body-Centered Cubic Metals. ACS Omega. 7, 10 (2022) 8385–8390.

DOI: 10.1021/acsomega.1c05902

Google Scholar

[51] W. Fang, J.O. Richardson, J. Chen, X.Z. Li, A. Michaelides, Simultaneous Deep Tunneling and Classical Hopping for Hydrogen Diffusion on Metals, Phys. Rev. Lett. 119 (2017), 126001.

DOI: 10.1103/physrevlett.119.126001

Google Scholar

[52] R. Sherman, H.K. Birnbaum, Hydrogen permeation and diffusion in niobium, Metall. Trans. A. 14 (1983) 203–210.

DOI: 10.1007/bf02651617

Google Scholar

[53] H. Hagi, Y. Hayashi, N. Ohtani, Diffusion Coefficient of Hydrogen in Pure Iron between 230 and 300 K, Trans. Japan Inst. Met. 20 (1979) 349–357.

DOI: 10.2320/matertrans1960.20.349

Google Scholar

[54] G. Matusiewicz, H.K. Birnbaum, The isotope effect for the diffusion of hydrogen in niobium, J. Phys. F Met. Phys. 7 (1977) 2285–2289.

DOI: 10.1088/0305-4608/7/11/009

Google Scholar

[55] R. Cantelli, F.M. Mazzolai, M. Nuovo, Internal Friction due to Long-Range Diffusion of Hydrogen in Niobium (Gorsky Effect), Phys. Status Solidi. 34 (1969) 597–600.

DOI: 10.1002/pssb.19690340221

Google Scholar

[56] C.P. Flynn, A.M. Stoneham, Quantum Theory of Diffusion with Application to Light Interstitials in Metals, Phys. Rev. B. 1 (1970) 3966–3978.

DOI: 10.1103/physrevb.1.3966

Google Scholar

[57] A. M. Stoneham, Non-classical diffusion processes, J. Nucl. Mater. 69–70 (1978) 109– 116

DOI: 10.1016/0022-3115(78)90239-8

Google Scholar

[58] G.K. Schenter, G. Mills, H. Jonsson, Reversible work-based quantum transition state theory, J. Chem. Phys. 101 (1994) 8964–8971.

DOI: 10.1063/1.468447

Google Scholar

[59] D. Marx, M. Parrinello, Ab initio path integral molecular dynamics: Basic ideas, J. Chem. Phys. 104 (1996) 4077–4082

DOI: 10.1063/1.471221

Google Scholar

[60] P. G. Sundell, Wahnström, G. Activation Energies for Quantum Diffusion of Hydrogen in Metals and on Metal Surfaces using Delocalized Nuclei within the Density-Functional Theory. Phys. Rev. Lett. 92 (2004) 155901

DOI: 10.1103/PhysRevLett.92.155901

Google Scholar

[61] D. Emin, M. I. Baskes, W. D. Wilson, Small-polaronic diffusion of light interstitials in bcc metals. Phys. Rev. Lett. 42 (1979) 791−794.

DOI: 10.1103/physrevlett.42.791

Google Scholar