Astrophysics of X-Ray Binary Spectra

Article Preview

Abstract:

In view of the fact that X-ray sources present characteristic spectra that make them unique, the spectral fitting technique has proven to play a fundamental role through the use of models that make it possible to reproduce the observed spectrum, thus making it possible to characterize the type of source that gave rise to it. A tool of paramount importance, among others that are currently gaining ground, is the XSPEC software, which is a solid and stable spectral fitting package that allows us to conduct scientific work with high standards of rigor in the analysis of data from astronomical objects in whose processes high energies are intrinsically involved, as is the case of X-rays. In this work we fit and analyze experimental data of two X-ray binary spectra: Cyg X-1 and V 0332+53, with theoretical models in XSPEC to obtain the expected statistics of the best fit through the reduced chi-square (hereafter, χ2) in both astronomical sources. From the results, it can be concluded that in both sources the best fit representing the physical processes occurring in these binaries was achieved, very close to results obtained by other authors using different techniques, contributing to the state of the art of the spectrum of astrophysical processes of high energy binaries.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

45-70

Citation:

Online since:

December 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. Arnaud, C. Gordon, B. Dorman, An X-Ray Spectral Fitting Package, User's Guide for version 12.13, HEASARC, Astrophysics Science Division, NASA/GSFC, Greenbelt, MD 20771, November 2022.

Google Scholar

[2] K. Arnaud, B. Dorman, C. Gordon, An X-Ray Spectral Fitting Package, User's Guide for version 12.9.0, HEASARC, Astrophysics Science Division, NASA/GSFC, Greenbelt, MD 20771, July 2015.

Google Scholar

[3] D. Klochkov, R. Staubert, A. Santangelo, R.E. Rothschild, C. Ferrigno, Pulse-amplitude-resolved spectroscopy of bright accreting pulsars: indication of two accretion regimes, A&A ESO (2017) 1-10.

DOI: 10.1051/0004-6361/201116800

Google Scholar

[4] E.P. Liang, P.L. Nolan, Cygnus X-1 revisited, Space Sci. Rev. 38 (1984) 353-354.

Google Scholar

[5] F.K. Li, G.W. Clark, Observation of an absorption dip in the X- ray intensity of Cygnus X-1, ApJ 191 (1974) L27–L29.

DOI: 10.1086/181537

Google Scholar

[6] S.H. Pravdo, N.E. White, Y. Kondo, R.H. Becker, E.A. Boldt, S.S. Holt, P.J. Serlemitsos, G.E. McCluskey, X-ray and ultraviolet spectroscopy of Cygnus X-1 = HDE 226868, ApJ (1980) L71.

DOI: 10.1086/183237

Google Scholar

[7] C. Done, J.S. Mulchaey, R.F. Mushotzky, K.A. Arnaud, An Ionized Accretion Disk in Cygnus X-1 ApJ 395 (1992) 275.

DOI: 10.1086/171649

Google Scholar

[8] A.P. Lightman, T.R. White, Effects of Cold Matter in Active Galactic Nuclei: A Broad Hump in the X-Ray Spectra, ApJ 335 (1988) 57.

DOI: 10.1086/166905

Google Scholar

[9] P. Magdziarz, A.A. Zdziarski, Angle-dependent Compton reflection of X-rays and gamma-rays, MNRAS 273 (1995) 837-848.

DOI: 10.1093/mnras/273.3.837

Google Scholar

[10] P. Barr, N.E. White, C.G. Page, The discovery of low-level iron K line emission from CYG X-1, MNRAS 216 (1985) 65P-70P.

DOI: 10.1093/mnras/216.1.65p

Google Scholar

[11] F. Cangemi, J. Rodriguez, V. Grinberg, P. Laurent, J. Wilms, High Energy Spectral Study of the Black Hole Cygnus X-1 with Integral, in: P. Di Matteo, F. Billebaud, F. Herpin, N. Lagarde, J.-B. Marquette, A. Robin, O. Venot (Eds.), SF2A, 2018, pp.237-242.

Google Scholar

[12] N. Mowlavi, I. Kreykenbohm, S.E. Shaw, K. Pottschmidt, J. Wilms, J. Rodriguez, N. Produit1, S. Soldi, S. Larsson, P. Dubath, INTEGRAL observation of the high-mass X-ray transient V 0332+53 during the 2005 outburst decline, A&A 451 (2006) 187–194.

DOI: 10.1051/0004-6361:20054235

Google Scholar

[13] M.D. Caballero-García, A. Camero-Arranz, M. Ozbey-Arabacı, C. Zurita, J. Suso, J. Gutiérrez-Soto, E. Beklen, F. Kiaeerad, R. Garrido, R. Hudec, Activity from the Be/X-ray binary system V 0332+53 during its low-luminosity outburst in 2008, A&A (2015).

DOI: 10.1051/0004-6361/201526849

Google Scholar

[14] C. Ferrigno, L. Ducci, E. Bozzo, P. Kretschmar, M. Kühnel, C. Malacaria, K. Pottschmidt, A. Santangelo, V. Savchenko, J. Wilms, two giant outbursts of V 0332+53 observed with INTEGRAL, Astron Astrophys Suppl Ser. A&A 595 (2016) A17.

DOI: 10.1051/0004-6361/201628865

Google Scholar

[15] S.S. Tsygankov, A.A. Lutovinov, E.M. Churazov, R.A. Sunyaev, V 0332+53 in the outburst of 2004–2005: luminosity dependence of the cyclotron line and pulse profile, MNRAS 371 (2006) 19–28.

DOI: 10.1111/j.1365-2966.2006.10610.x

Google Scholar

[16] W. Coburn, P. Kretschmar, I. Kreykenbohm, V.A. McBride, R.E. Rothschild, J. Wilms, Multiple Cyclotron Lines in V 0332+53, ATeL (2005) 381.

Google Scholar

[17] I. Kreykenbohm, N. Mowlavi, N. Produit, S. Soldi, R. Walter, P. Dubath, P. Lubiński, M. Türler, W. Coburn, A. Santangelo, R.E. Rothschild, R. Staubert, INTEGRAL observation of V 0332+53 in outburst, A&A 433 (2005) L45-L48.

DOI: 10.1051/0004-6361:200500023

Google Scholar

[18] S.S. Tsygankov, A.A. Lutovinov, A.V. Serber, Completing the puzzle of the 2004–2005 outburst in V 0332+53: the brightening phase included, MNRAS 401 (2010) 1628–1635.

DOI: 10.1111/j.1365-2966.2009.15791.x

Google Scholar

[19] T. Mihara, K. Makishima, T. Ohashi, T. Sakao, M. Tashiro, F. Nagase, Y. Tanaka, S. Kitamoto, S. Miyamoto, J.E. Deeter, P.E. Boynton, New observations of the cyclotron absorption feature in Hercules X–1, Nature 346 (1990) 250–252.

DOI: 10.1038/346250a0

Google Scholar

[20] H. Tananbaum, H. Gursky, E. Kellogg, R. Giacconi, C. Jones, Observation of a Correlated X-Ray Transition in Cygnus X-1, ApJ 177 (1972) L5+.

DOI: 10.1086/181042

Google Scholar

[21] S.E. Motta, J. Rodriguez, E. Jourdain, M. Del Santo, G. Belanger, F. Cangemi, V. Grinberg, J.J.E. Kajava, E. Kuulkers, J. Malzac, K. Pottschmidt, J.P. Roques, C. Sanchez-Fernandez, J. Wilms, The INTEGRAL view on Black Hole X-ray Binaries, APJ 521 (2021) L121-L124.

DOI: 10.1016/j.newar.2021.101618

Google Scholar

[22] M. McConnell, et al., Observations of Cygnus X-1 by COMPTEL during 1991, ApJ 424 (1994) 933.

Google Scholar

[23] K.S. Long, G.A. Chanan, R. Novick, The X-ray polarization of the Cygnus sources ApJ 238 (1980) 710–716.

DOI: 10.1086/158027

Google Scholar

[24] M. Chauvin, et al., Accretion geometry of the black-hole binary Cygnus X-1 from X-ray polarimetry, Nat. Astron. 2 (2018) 652–655.

DOI: 10.1038/s41550-018-0489-x

Google Scholar

[25] M. Chauvin, et al. PoGO+ polarimetric constraint on the syn-chrotron jet emission of Cygnus X-1, MNRAS 483 (2019) L138–L143.

DOI: 10.1093/mnrasl/sly233

Google Scholar

[26] R. Duro, Revealing the broad iron Kα line in Cygnus X-1 through simultaneous XMM-Newton, RXTE, and INTEGRAL observations, A&A 589 (2016) A14.

DOI: 10.1051/0004-6361/201424740

Google Scholar

[27] K. Pottschmidt, J. Wilms, M.A. Nowak, S. Larsson, A.A. Zdziarski, G.G. Pooley, Integral and rxte power spectra of cygnus x-1, ASR 38 (2006b) 1350–1353.

DOI: 10.1016/j.asr.2005.04.032

Google Scholar

[28] E. Jourdain, J.P. Roques, J. Malzac, The Emission of Cygnus X-1: Observations with INTEGRAL SPI from 20 keV to 2 MeV, ApJ 744 (2012b) 64.

DOI: 10.1088/0004-637x/744/1/64

Google Scholar

[29] J. Malzac, P.O. Petrucci, E. Jourdain, M. Cadolle Bel, P. Sizun, G. Pooley, C. Cabanac, S. Chaty, T. Belloni, J. Rodriguez, J. P. Roques, P. Durouchoux, A. Goldwurm and P. Laurent, Bimodal spectral variability of Cygnus X-1 in an intermediate state, A&A 448 (2006) 1125–1137.

DOI: 10.1051/0004-6361:20053614

Google Scholar

[30] R. Walter, M. Xu, Observations of Cygnus X-1 in the MeV band by the INTEGRAL imager, A&A 603 (2017) A8.

DOI: 10.1051/0004-6361/201629347

Google Scholar

[31] F. Cangemi, et al., Potential origin of the state-dependent high energy tail in the black hole microquasar Cygnus X-1 as seen with INTEGRAL, A&A (2021a) in press.

DOI: 10.1051/0004-6361/202038604

Google Scholar

[32] G.E. Romero, F.L. Vieyro, S. Chaty, Coronal origin of the polarization of the high-energy emission of Cygnus X-1, A&A 562 (2014) L7.

DOI: 10.1051/0004-6361/201323316

Google Scholar

[33] M. Del Santo, J. Malzac, R. Belmont, L. Bouchet, G. De Cesare, The magnetic field in the X-ray corona of Cygnus X-1, MNRAS 430 (2013) 209–220.

DOI: 10.1093/mnras/sts574

Google Scholar

[34] C. Pepe, G.S. Vila, G.E. Romero, Lepto-hadronic model for the broadband emission of Cygnus X-1, A&A 584 (2015) A95.

DOI: 10.1051/0004-6361/201527156

Google Scholar

[35] D. Kantzas, et al., A new lepto-hadronic model applied to the first simultaneous multiwavelength data set for Cygnus X-1, MNRAS 500 (2021) 2112–2126.

DOI: 10.1093/mnras/staa3349

Google Scholar

[36] T.M. Belloni, S.E. Motta, T. Muñoz-Darias, Black hole transients, Bull. Astr. Soc. India 39 (2011) 1–20.

Google Scholar

[37] J. Malzac, R. Belmont, R., The synchrotron boiler and the spectral states of black hole binaries, MNRAS 392 (2009) 570–589.

DOI: 10.1111/j.1365-2966.2008.14142.x

Google Scholar

[38] G. Wardzinski, A.A. Zdziarski, Effects of non-thermal tails in Maxwellian electron distributions on synchrotron and Compton processes, MNRAS 325 (2001) 963–971.

DOI: 10.1046/j.1365-8711.2001.04387.x

Google Scholar

[39] R.J. Blissett, A.M. Cruise, The restoration of astronomical X-ray spectra, MNRAS (1979) 186 45-57.

Google Scholar

[40] S.M. Kahn, R.J. Blissett, The direct deconvolution of X-ray spectra, ApJ 238 (1980) 417-431.

DOI: 10.1086/157999

Google Scholar

[41] Loredo, T.J., Epstein, R.I., Analyzing Gamma-Ray Burst Spectral Data, ApJ 336 (1989) 896.

DOI: 10.1086/167060

Google Scholar

[42] L. Titarchuk, M. Apostolos, D. Nikolaos, Kylafis, X-Ray Spectral Formation in a Converging Fluid Flow: Spherical Accretion into Black Holes, ApJ 487 (1997) 834-846.

DOI: 10.1086/304617

Google Scholar

[43] L. Titarchuk, T. Zannias, T. The Extended Power Law as an Intrinsic Signature for a Black Hole, ApJ 493 (1998) 863-872.

DOI: 10.1086/305157

Google Scholar

[44] P. Laurent, L. Titarchuk, The Converging Inflow Spectrum is an Intrinsic Signature for A Black Hole: Monte Carlo Simulations of Comptonization on Free-Falling Electrons ApJ 511 (1999) 289-297.

DOI: 10.1086/306683

Google Scholar

[45] K. Borozdin, M. Revnivtsev, S. Trudolyubov, Ch. Shrader, L. Titarchuk, Do the Spectra of Soft X-Ray Transients Reveal Bulk-Motion Inflow Phenomenon? ApJ 517 (1999) 367-380.

DOI: 10.1086/307186

Google Scholar

[46] C.R. Shrader, L. Titarchuk, Mass Determination of Black Holes in Lmc X-1 and Nova Muscae 1991 from their High-Energy Spectra, ApJ 521 (1999) L21-L124.

DOI: 10.1086/312194

Google Scholar

[47] L. Titarchuk, Generalized Comptonization Models and Application to the Recent High-Energy Observations, ApJ 434 (1994) 570.

DOI: 10.1086/174760

Google Scholar

[48] X-M. Hua, L. Titarchuk, Comptonization models and spectroscopy of X-Ray and Gamma-Ray sources: a combined study by Monte Carlo and analytical methods, ApJ 449 (1995) 188.

DOI: 10.1086/176045

Google Scholar

[49] L. Titarchuk, Y. Lyubarskij, Power-Law Spectra as a Result of Comptonization of the Soft Radiation in a Plasma Cloud, ApJ 450 (1995) 876.

DOI: 10.1086/176191

Google Scholar

[50] R.A. Sunyaev, L.G. Titarchuk, Unveiling cosmic X-ray/γ-ray sources from their scattering screen, A&A (1980) 86 121.

DOI: 10.1051/0004-6361/200912156

Google Scholar

[51] M. D. Caballero-García, A. Camero-Arranz, M. Özbey Arabacı, C. Zurita, J. Suso, J. Gutiérrez-Soto, E. Beklen, F. Kiaeerad, R. Garrido and R. Hudec, Activity from the Be/X-ray binary system V 0332+53 during its intermediate-luminosity outburst in 2008, A&A 589 A9 (2016).

DOI: 10.1051/0004-6361/201526849

Google Scholar

[52] Khaled G. Elshamouty, Craig O. Heinke, Rhys Chouinard, The soft X-ray spectrum of the high-mass X-ray Binary V 0332+53 in quiescence, MNRAS 463 (2016) 78–83.

DOI: 10.1093/mnras/stw1940

Google Scholar

[53] S.D. Bykov, E.V. Filippova, M.R. Gilfanov, S.S. Tsygankov, A.A. Lutovinov, S.V. Molkov, Pulsating iron spectral features in the emission of X-ray Pulsar V 0332+53, MNRAS 506 (2021) 2156–2169.

DOI: 10.1093/mnras/stab1852

Google Scholar

[54] Y. Tanaka, Advances in Space Research, The tenma mission, 5, (1985) 81-89.

Google Scholar

[55] S. Zhang, J. Qu, L. Song, D.F. Torres, Recovery of the Orbital Parameters and Pulse Evolution of V 0332+53 during a Huge Outburst, ApJ 630 (2005) L65-L68.

DOI: 10.1086/462415

Google Scholar