[1]
Mody, N. R., Hwang, R. Q., Venka-Taraman, S., Angelo, J. E., Norwood, D. P., & Gerberich, W. W. (1998). Adhesion and fracture of tantalum nitride films. Acta materialia, 46(2), 585-597.
DOI: 10.1016/s1359-6454(97)00243-7
Google Scholar
[2]
Tan, P., Fu, L., Teng, J., Zhu, J., Yang, W., Li, D., & Zhou, L. (2019). Effect of texture on wear resistance of tantalum nitride film. Tribology International, 133, 126-135.
DOI: 10.1016/j.triboint.2019.01.001
Google Scholar
[3]
Westergård, R., Bromark, M., Larsson, M., Hedenqvist, P., & Hogmark, S. (1997). Mechanical and tribological characterization of DC magnetron sputtered tantalum nitride thin films. Surface and Coatings Technology, 97(1-3), 779-784.
DOI: 10.1016/s0257-8972(97)00338-1
Google Scholar
[4]
Xu S, Munroe P, Xu J, Xie ZH (2016) The microstructure and mechanical properties of tantalum nitride coatings deposited by a plasma assisted bias sputtering deposition process. Surface and Coatings Technology 307:470–475
DOI: 10.1016/j.surfcoat.2016.09.015
Google Scholar
[5]
Kim SK, Cha BC (2005) Deposition of tantalum nitride thin films by D.C. magnetron sputtering. Thin Solid Films 475:202–207
DOI: 10.1016/j.tsf.2004.08.059
Google Scholar
[6]
Lee GR, Kim H, Choi HS, Lee JJ (2007) Superhard tantalum-nitride films formed by inductively coupled plasma-assisted sputtering. Surf Coat Technol 201:5207–5210
DOI: 10.1016/j.surfcoat.2006.07.207
Google Scholar
[7]
Bernoulli D, Müller U, Schwarzenberger M, Hauert R, Spolenak R (2013) Magnetron sputter deposited tantalum and tantalum nitride thin films: an analysis of phase, hardness and composition. Thin Solid Films 548:157–161
DOI: 10.1016/j.tsf.2013.09.055
Google Scholar
[8]
Alami J, Eklund P, Andersson JM, Lattemann M, Wallin E, Bohlmark J, Persson P, Helmersson U (2007) Phase tailoring of Ta thin films by highly ionized pulsed magnetron sputtering. Thin Solid Films 515:3434–3438
DOI: 10.1016/j.tsf.2006.10.013
Google Scholar
[9]
Min, K. H., Chun, K. C., & Kim, K. B. (1996). Comparative study of tantalum and tantalum nitrides (Ta2N and TaN) as a diffusion barrier for Cu metallization. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 14(5), 3263-3269.
DOI: 10.1116/1.588818
Google Scholar
[10]
Nurlaela, E., Ziani, A., & Takanabe, K. (2016). Tantalum nitride for photocatalytic water splitting: concept and applications. Materials for Renewable and Sustainable Energy, 5, 1-21.
DOI: 10.1007/s40243-016-0083-z
Google Scholar
[11]
Grosser M, Münch M, Seidel H, Bienert C, Roosen A, Schmid U (2012) The impact of substrate properties and thermal annealing on tantalum nitride thin films. Applied Surface Science, 258:2894–2900
DOI: 10.1016/j.apsusc.2011.11.003
Google Scholar
[12]
Holloway, K., Fryer, P. M., Cabral Jr, C., Harper, J. M. E., Bailey, P. J., & Kelleher, K. H. (1992). Tantalum as a diffusion barrier between copper and silicon: Failure mechanism and effect of nitrogen additions. Journal of Applied Physics, 71(11), 5433-5444.
DOI: 10.1063/1.350566
Google Scholar
[13]
Qi, J. L., Wang, L. P., Zhang, Y., Guo, X., Yu, W. Q., Wang, Q. H., ... & Wen, M. (2021). Amorphous AlN nanolayer thickness dependent toughness, thermal stability and oxidation resistance in TaN/AlN nanomultilayer films. Surface and Coatings Technology, 405, 126724.
DOI: 10.1016/j.surfcoat.2020.126724
Google Scholar
[14]
Leng YX, Sun H, Yang P, Chen JY, Wang J, Wan GJ, Huang N, Tian XB, Wang LP, Chu PK (2001) Biomedical properties of tantalum nitride films synthesized by reactive magnetron sputtering. Thin Solid Films 398:471–475
DOI: 10.1016/s0040-6090(01)01448-1
Google Scholar
[15]
Corona-Gomez, J., Jack, T. A., Feng, R., & Yang, Q. (2021). Wear and corrosion characteristics of nano-crystalline tantalum nitride coatings deposited on CoCrMo alloy for hip joint applications. Materials Characterization, 182, 111516.
DOI: 10.1016/j.matchar.2021.111516
Google Scholar
[16]
Xie, Q., Qu, X. P., Tan, J. J., Jiang, Y. L., Zhou, M., Chen, T., & Ru, G. P. (2006). Superior thermal stability of Ta/TaN bi-layer structure for copper metallization. Applied Surface Science, 253(3), 1666-1672.
DOI: 10.1016/j.apsusc.2006.03.002
Google Scholar
[17]
Lee, Y. J., Suh, B. S., Rha, S. K., & Park, C. O. (1998). Structural and chemical stability of Ta–Si–N thin film between Si and Cu. Thin Solid Films, 320(1), 141-146.
DOI: 10.1016/s0040-6090(97)01078-x
Google Scholar
[18]
Seo, H. S., Lee, T. Y., Petrov, I., Greene, J. E., & Gall, D. (2005). Epitaxial and polycrystalline HfNx (0.8⩽ x⩽ 1.5) layers on MgO (001): Film growth and physical properties. Journal of Applied Physics, 97(8).
DOI: 10.1063/1.1870097
Google Scholar
[19]
Lackner, J. M., Waldhauser, W., Major, B., Morgiel, J., Major, L., Takahashi, H., & Shibayama, T. (2006). Growth structure and growth defects in pulsed laser deposited Cr–CrNx–CrCxN1− x multilayer coatings. Surface and Coatings Technology, 200(11), 3644-3649.
DOI: 10.1016/j.surfcoat.2005.03.032
Google Scholar
[20]
Misra, A., Hirth, J. P., & Hoagland, R. G. (2005). Length-scale-dependent deformation mechanisms in incoherent metallic multilayered composites. Acta materialia, 53(18), 4817-4824.
DOI: 10.1016/j.actamat.2005.06.025
Google Scholar
[21]
Zhang, M., Yang, B., Chu, J., & Nieh, T. G. (2006). Hardness enhancement in nanocrystalline tantalum thin films. Scripta Materialia, 54(7), 1227-1230.
DOI: 10.1016/j.scriptamat.2005.12.027
Google Scholar
[22]
Zhang, M., Zhang, Y. F., Rack, P. D., Miller, M. K., & Nieh, T. G. (2007). Nanocrystalline tetragonal tantalum thin films. Scripta Materialia, 57(11), 1032-1035.
DOI: 10.1016/j.scriptamat.2007.07.041
Google Scholar
[23]
Shiri, S., Zhang, C., Odeshi, A., & Yang, Q. (2018). Growth and characterization of tantalum multilayer thin films on CoCrMo alloy for orthopedic implant applications. Thin Solid Films, 645, 405-408.
DOI: 10.1016/j.tsf.2017.11.017
Google Scholar
[24]
Lin, J., Moore, J. J., Sproul, W. D., Lee, S. L., & Wang, J. (2010). Effect of negative substrate bias on the structure and properties of Ta coatings deposited using modulated pulse power magnetron sputtering. IEEE transactions on plasma science, 38(11), 3071-3078.
DOI: 10.1109/tps.2010.2068316
Google Scholar
[25]
Matson, D. W., McClanahan, E. D., Rice, J. P., Lee, S. L., & Windover, D. (2000). Effect of sputtering parameters on Ta coatings for gun bore applications. Surface and Coatings Technology, 133, 411-416.
DOI: 10.1016/s0257-8972(00)00967-1
Google Scholar
[26]
Shin, C. S., Kim, Y. W., Gall, D., Greene, J. E., & Petrov, I. (2002). Phase composition and microstructure of polycrystalline and epitaxial TaNx layers grown on oxidized Si (001) and MgO (001) by reactive magnetron sputter deposition. Thin Solid Films, 402(1-2), 172-182.
DOI: 10.1016/s0040-6090(01)01618-2
Google Scholar
[27]
Gerstenberg, D., & Calbick, C. J. (1964). Effects of nitrogen, methane, and oxygen on structure and electrical properties of thin tantalum films. Journal of Applied physics, 35(2), 402-407.
DOI: 10.1063/1.1713324
Google Scholar
[28]
Lejaeghere, K., Van Speybroeck, V., Van Oost, G., & Cottenier, S. (2014). Error estimates for solid-state density-functional theory predictions: an overview by means of the ground-state elemental crystals. Critical reviews in solid state and materials sciences, 39(1), 1-24.
DOI: 10.1080/10408436.2013.772503
Google Scholar
[29]
Shamraĭ, V. F., Warhulska, J. K., Arakcheeva, A. V., & Grinevich, V. V. (2004). Magnetic properties and crystal structure of β-Ta. Crystallography Reports, 49, 930-935.
DOI: 10.1134/1.1828135
Google Scholar
[30]
Popova, S. V. (1975). The crystal structures of new superconducting materials obtained by high pressure treatment. Acta Crystallogr. Sect. A Cryst. Physics, Diffraction, Theor. Gen. Crystallogr, 31, 99.
DOI: 10.1107/s0567739475001271
Google Scholar