Study of Gelation Processes in Flame Retardant Compositions of the SiO2 Sol System – A Phosphate-Containing Additive

Article Preview

Abstract:

One of the promising directions for ensuring the fire resistance of wooden building materials is the development of silicon phosphate compositions, thanks to which the formation of a protective layer is possible, which effectively prevents the spread of fire. The paper examines the possibility of using orthophosphate acid as a modifying additive for silicic acid sols. The influence of H3PO4 concentration on the rheological characteristics of the studied sols was determined. Sols with small amounts of orthophosphate acid (1–2%) lost their fluidity in the interval of 45–70 minutes. Increase of the additive content to 8% led to a sharp increase in optical density values and extended the survivability interval of the sol to 24 hours. Coatings based on gels with 1–2% orthophosphate acid were elastic, but increasing the content of the additive led to the formation of hard, inelastic coatings.According to the results of infrared (IR) spectroscopy, the effect of orthophosphate acid on the nature of polycondensation was confirmed. The degree of polycondensation was estimated by the ratio of intensity (I) and band width (d) at 1050 cm–1, which corresponds to the vibrations of Si-O-Si bonds. Based on the comparison of I/d indicator values, the formation of linear siloxane chains was confirmed in the case of the use of small H3PO4 additions. Linear polycondensation ensures greater homogeneity of the gel, which was confirmed by IR spectroscopy of gels heat-treated at 800 °C and by microscopic observations. The coating on the wood surface, based on a fire-resistant silica-containing composition with small additions of orthophosphate acid, had the most uniform and continuous structure.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

101-110

Citation:

Online since:

February 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Chernukha, A., Teslenko, A., Kovaliov, P., Bezuglov, O. (2020). Mathematical modeling of fire-proof efficiency of coatings based on silicate composition (2020) Materials Science Forum, 1006 MSF, 70-75.

DOI: 10.4028/www.scientific.net/msf.1006.70

Google Scholar

[2] Pospelov, B., Rybka, E., Meleshchenko, R., Gornostal, S., Shcherbak, S. (2017). Results of experimental research into correlations between hazardous factors of ignition of materials in premises. Eastern-European Journal of Enterprise Technologies, 6/10 (90), 50–56.

DOI: 10.15587/1729-4061.2017.117789

Google Scholar

[3] S. Park, Y. Han, D.W. Son, (2020). Flame retardancy of wood products by spreading concentration and impregnation time of flame retardant, Journal of the Korean Wood Science and Technology, 48(4), 417–430.

DOI: 10.5658/wood.2020.48.4.417

Google Scholar

[4] P. Mali, N. Sonawane, V. Patil, G.P. Lokhande, R. Mawale, N.S. Pawar, (2021). Morphology of wood degradation and flame retardants wood coating technology: an overview, International Wood Products Journal, 13(1), 21–40.

DOI: 10.1080/20426445.2021.2011552

Google Scholar

[5] Chernukha, A., Chernukha, A., Kovalov, P., Savchenko, A. (2021). Thermodynamic study of fire-protective material Materials Science Forum, 1038 MSF, 486–491.

DOI: 10.4028/www.scientific.net/msf.1038.486

Google Scholar

[6] Zmaha, M., Pozdieiev, S., Zmaha, Y., Nekora, O., Sidnei, S. (2021). Research of the behavioral of the wooden beams with fire protection lining under fire loading IOP Conference Series: Materials Science and Engineering, 1021/1, 012031.

DOI: 10.1088/1757-899x/1021/1/012031

Google Scholar

[7] Dubinin D., Korytchenko K., Lisnyak A., Hrytsyna I., Trigub V. (2018). Improving the installation for fire extinguishing with finelydispersed water. Eastern-European Journal of Enterprise Technologies, 2/10 (92), 38–43.

DOI: 10.15587/1729-4061.2018.127865

Google Scholar

[8] Medved, I., Otrosh, Y., Kovalov, A., Mykhailovska, Y. (2023). Search for solutions in the problems of calculation of building structures.AIP Conference Proceedings, 2840(1), 040003.

DOI: 10.1063/5.0168054

Google Scholar

[9] Pospelov, B., Rybka, E., Meleshchenko, R., Gornostal, S., Shcherbak, S. (2017). Results of experimental research into correlations between hazardous factors of ignition of materials in premises. Eastern-European Journal of Enterprise Technologies, 6/10 (90), 50–56.

DOI: 10.15587/1729-4061.2017.117789

Google Scholar

[10] Pospelov,B., Andronov, V., Rybka, E., Krainiukov, O., Karpets, K., Pirohov, O., Semenyshyna, I., Kapitan, R., Promska, A., Horbov, O. (2019). Development of the correlation method for operative detection of recurrent states Eastern-European Journal of Enterprise Technologies, 6/4 (102), 39–46.

DOI: 10.15587/1729-4061.2019.187252

Google Scholar

[11] Pospelov, B., Andronov, V., Rybka, E., Popov, V., Romin, A. (2018). Experimental study of the fluctuations of gas medium parameters as early signs of fire. Eastern-European Journal of Enterprise Technologies, 1/10 (91), 50–55.

DOI: 10.15587/1729-4061.2018.122419

Google Scholar

[12] Sadkovyi, V., Andronov, V., Semkiv, O., Kovalov, A., Rybka, E., Otrosh, Y., Udianskyi, M., Koloskov, V., Danilin, A., Kovalov, P. (2021). Fire resistance of reinforced concrete and steel structures. Fire resistance of reinforced concrete and steel structures, 1-166.

DOI: 10.15587/978-617-7319-43-5

Google Scholar

[13] Myrgorod, O., Shabanova, G., Ruban, A., & Shvedun, V. (2021). Experiment Planning for Prospective Use of Barium-Containing Alumina Cement for Refractory Concrete Making. In Materials Science Forum, 1038, p.330–335.

DOI: 10.4028/www.scientific.net/msf.1038.330

Google Scholar

[14] Kovalov, A., Otrosh, Yu., Surianinov, M., Kovalevska, T. (2019). Experimental and computer researches of ferroconcrete floor slabs at high-temperature influences. Materials Science Forum, 968 MSF, 361–367.

DOI: 10.4028/www.scientific.net/msf.968.361

Google Scholar

[15] Vasilchenko, A., Danilin, O., Lutsenko, T., & Ruban, A. (2021). Features of Evaluation of Fire Resistance of Reinforced Concrete Ribbed Slab under Combined Effect "Explosion-Fire." In Materials Science Forum, 1038, p.492–499.

DOI: 10.4028/www.scientific.net/msf.1038.492

Google Scholar

[16] Kovalov, A., Otrosh, Y., Ostroverkh, O., Hrushovinchuk, O., Savchenko, O. (2018). Fire resistance evaluation of reinforced concrete floors with fire-retardant coating by calculation and experimental method. E3S Web of Conferences, 60, № 00003.

DOI: 10.1051/e3sconf/20186000003

Google Scholar

[17] Vasilchenko, A., Danilin, O., Lutsenko, T., Ruban, A., & Nestorenko, D.(2020). Features of some Polymer Building Materials Behavior at Heating. Materials Science Forum, 1006, 47-54.

DOI: 10.4028/www.scientific.net/msf.1006.47

Google Scholar

[18] D. Tregubov, O. Tarakhno, V. Deineka, F. Trehubova. (2022). Oscillation and Stepwise of Hydrocarbon Melting Temperatures as a Marker of their Cluster Structure Solid State Phenomena, 334, p.124–130.

DOI: 10.4028/p-3751s3

Google Scholar

[19] Y. Hapon, D. Tregubov, O. Tarakhno, V. Deineka. (2020). Technology оf safe galvanochemical process оf strong platings forming using ternary alloy Materials Science Forum, 1006 MSF, p.233–238.

DOI: 10.4028/www.scientific.net/msf.1006.233

Google Scholar

[20] A. Chernukha, A. Chernukha, K. Ostapov, T. Kurska, (2021). Investigation of the processes of formation of a fire retardant coating, Materials Science Forum, 1038, 480–485.

DOI: 10.4028/www.scientific.net/msf.1038.480

Google Scholar

[21] B. Pospelov, V. Andronov, E. Rybka, K. Karpets, E. Kochanov, (2021). Development of the Method of Operational Forecasting of Fire in the Premises of Objects Under Real Conditions Eastern-European Journal of Enterprise Technologies. 2/10, (110),  43–50.

DOI: 10.15587/1729-4061.2021.226692

Google Scholar

[22] Blyznyuk, O., Vasilchenko, A., Ruban, A., & Bezuhla, Y. (2020). Improvement of Fire Resistance of Polymeric Materials at their Filling with Aluminosilicates. In Materials Science Forum, 1006, p.55–61.

DOI: 10.4028/www.scientific.net/msf.1006.55

Google Scholar

[23] I. Van Der Veen, J. De Boer, (2012). Phosphorus flame retardants: Properties, production, environmental occurrence, toxicity and analysis, Chemosphere. 88(10), 1119–1153.

DOI: 10.1016/j.chemosphere.2012.03.067

Google Scholar

[24] S.K. Witchey, V. Sutherland, B. Collins, G. Roberts, K.R. Shockley, M. Vallant, J. Krause, H. Cunny, S. Waidyanatha, E. Mylchreest, B. Sparrow, R.A. Moyer, M. Behl, (2023). Reproductive and developmental toxicity following exposure to organophosphate ester flame retardants and plasticizers, triphenyl phosphate and isopropylated phenyl phosphate, in Sprague Dawley rats, Toxicological Sciences. 191(2), 374–386.

DOI: 10.1093/toxsci/kfac135

Google Scholar

[25] K. Kademoglou, F. Xu, J. A. Sánchez, L. S. Haug, A. Covaci, C. Collins, (2017). Legacy and alternative flame retardants in Norwegian and UK indoor environment: Implications of human exposure via dust ingestion, Environment International. 102, 48–56.

DOI: 10.1016/j.envint.2016.12.012

Google Scholar

[26] N. R. Maddela, K. Venkateswarlu, M. Megharaj, (2020). Tris(2-chloroethyl) phosphate, a pervasive flame retardant: critical perspective on its emissions into the environment and human toxicity, Environmental Science: Processes & Impacts. 22(9), 1809–1827.

DOI: 10.1039/d0em00222d

Google Scholar

[27] C. He, C. Lin, J.F. Mueller, (2020). Organophosphate flame retardants in the environment: Source, occurrence, and human exposure, In Comprehensive Analytical Chemistry. 88, 341–365.

DOI: 10.1016/bs.coac.2019.10.008

Google Scholar

[28] C. Yao, H. Yang, Y. Li, (2021). A review on organophosphate flame retardants in the environment: Occurrence, accumulation, metabolism and toxicity, Science of the Total Environment. 795, 148837.

DOI: 10.1016/j.scitotenv.2021.148837

Google Scholar

[29] A. Blum, M. Behl, L.S. Birnbaum, M.L. Diamond, A.L. Phillips, V. Singla, N.S. Sipes, H.M. Stapleton, M. Venier, (2019). Organophosphate ester flame retardants: Are they a regrettable substitution for polybrominated diphenyl ethers, Environmental Science and Technology Letters. 6(11), 638–649.

DOI: 10.1021/acs.estlett.9b00582

Google Scholar

[30] A.K. Rosenmai, S.B. Winge, M. Möller, J. Lundqvist, E.B. Wedebye, N.G. Nikolov, H.K.L. Johansson, A.M. Vinggaard, (2021). Organophosphate ester flame retardants have antiandrogenic potential and affect other endocrine related endpoints in vitro and in silico, Chemosphere, 263, 127703.

DOI: 10.1016/j.chemosphere.2020.127703

Google Scholar

[31] B. Pospelov, E. Rybka, R. Meleshchenko, O. Krainiukov, S. Harbuz, Yu. Bezuhla, I. Morozov, A. Kuruch, O. Saliyenko, R. Vasylchenko, (2020). Use of uncertainty function for identification of hazardous states of atmospheric pollution vector, Eastern-European Journal of Enterprise. 2/10, (104), 6–12.

DOI: 10.15587/1729-4061.2020.200140

Google Scholar

[32] V. Sadkovyi, B. Pospelov, V. Andronov, E. Rybka, O. Krainiukov, А. Rud, K. Karpets, Yu. Bezuhla, (2020). Construction of a method for detecting arbitrary hazard pollutants in the atmospheric air based on the structural function of the current pollutant concentrations, Eastern-European Journal of Enterprise. 6/10, (108), 14–22.

DOI: 10.15587/1729-4061.2020.218714

Google Scholar

[33] Pasternak, V., Ruban, A., Surianinov, M., Otrosh, Y., & Romin, A. (2022). Software Modeling Environment for Solving Problems of Structurally Inhomogeneous Materials. In Materials Science Forum, 1068, p.215–222.

DOI: 10.4028/p-h1c2rp

Google Scholar

[34] O. Skorodumova, O. Tarakhno, O. Chebotaryova, O. Bezuglov, F.M. Emen, (2021). The use of sol-gel method for obtaining fire-resistant elastic coatings on cotton fabrics, Materials Science Forum, 1038, 468–479.

DOI: 10.4028/www.scientific.net/msf.1038.468

Google Scholar

[35] O. Skorodumova, O. Tarakhno, O. Chebotaryova, (2022). Improving the Fire-Retardant Properties of Cotton-Containing Textile Materials through the Use of Organo-Inorganic SiO2 Sols, Key Engineering Materials, 927, 63–68.

DOI: 10.4028/p-jbv49r

Google Scholar

[36] O. Zybina, M. Gravit, Intumescent coatings for fire protection of building structures and materials, Springer series on polymer and composite materials (2020).

DOI: 10.1007/978-3-030-59422-0

Google Scholar

[37] Z. Jiang, H. Li, Y. He, Y. Liu, C. Dong, Flame retardancy and thermal behavior of cotton fabrics based on a novel phosphorus-containing siloxane, Applied Surface Science. 479 (2019) 765–775.

DOI: 10.1016/j.apsusc.2019.02.159

Google Scholar

[38] X. Cheng, C. Liang, J. Guan, X. Yang, R. Tang, Flame retardant and hydrophobic properties of novel sol-gel derived phytic acid/silica hybrid organic-inorganic coatings for silk fabric, Applied Surface Science. 427 (2018) 69–80.

DOI: 10.1016/j.apsusc.2017.08.021

Google Scholar

[39] T. Leber, D. Kenn, F. Matt, M. Scheller, T. Tonnesen, J. González, Julián, Phosphate-bonded refractories in hydrogen containing atmosphere, Open Ceramics. 17 (2024) 100511.

DOI: 10.1016/j.oceram.2023.100511

Google Scholar

[40] Pasternak, V., Samchuk, L., Huliieva, N., Andrushchak, I., & Ruban, A. (2021). Investigation of the Properties of Powder Materials Using Computer Modeling. Materials Science Forum, 1038, 33–39.

DOI: 10.4028/www.scientific.net/msf.1038.33

Google Scholar

[41] Ruban, A., Pasternak, V., & Huliieva, N. (2022). Prediction of the Structural Properties of Powder Materials by 3D Modeling Methods. In Materials Science Forum, 1068, p.231–238.

DOI: 10.4028/p-18k386

Google Scholar

[42] О. Skorodumova, O. Tarakhno, A.M. Babayev, A. Chernukha, S. Shvydka, Study of Phosphorus-Containing silica coatings based on liquid glass for fire protection of textile materials, Key Engineering Materials. 954 (2023) 167–175.

DOI: 10.4028/p-hgyq9v

Google Scholar

[43] M. Zhao, X. Zou, Q. Wei, S. Meng, H. B. Zhang, C. Su, Preparation and Characterization of Na2O-Y2O3-P2O5-SiO2 Transparent Glass Ceramics, Solid State Phenomena. 281 (2018) 692–698.

Google Scholar

[44] M. Zribi, S. Baklouti, Investigation of Phosphate based geopolymers formation mechanism. Journal of Non-Crystalline Solids. 562 (2021) 120777.

DOI: 10.1016/j.jnoncrysol.2021.120777

Google Scholar

[45] S. Bellayer, M. Jimenez, B. Prieur, B. Dewailly, A. Ramgobin, J. Sarazin, B. Revel, G. Tricot, S. Bourbigot, Fire retardant sol-gel coated polyurethane foam: Mechanism of action, Polymer Degradation and Stability. 147 (2018) 159–167.

DOI: 10.1016/j.polymdegradstab.2017.12.005

Google Scholar

[46] R. Karan, P. Pal, P. Maiti, K. Das, Structure, properties and in-vitro response of SiO2-Na2O-CaO-P2O5 system, based glass-ceramics after partial replacement of Na2O by Li2O, Journal of Non-Crystalline Solids. 556 (2021) 120554.

DOI: 10.1016/j.jnoncrysol.2020.120554

Google Scholar

[47] A. Stýskalík, D. Škoda, Z. Moravec, M. Babiak, C. E. Barnes, J. Pinkas, Control of micro/mesoporosity in non-hydrolytic hybrid silicophosphate xerogels. Journal of Materials Chemistry. A, Materials for Energy and Sustainability. 3(14) (2015) 7477–7487.

DOI: 10.1039/c4ta06823h

Google Scholar

[48] O.B. Skorodumova, G.D. Semchenko, Y.N. Goncharenko, V.S. Тolstoi, Crystallization of SiO2 from ethylsilicate-based gels, Glass and Ceramics. 58(1–2) (2001) 31–33.

DOI: 10.1023/a:1010933028152

Google Scholar

[49] M. Abbasi, B. Hashemi, Fabrication and characterization of bioactive glass-ceramic using soda–lime–silica waste glass. Materials Science and Engineering: 37 (2014) 399–404.

DOI: 10.1016/j.msec.2014.01.031

Google Scholar

[50] N.F.B. Pallan, Х.А. Matori, M. Hashim, R.S. Azis, N. Zainuddin, F.M. Idris, I.R. Ibrahim, L.C. Wah, S.N.A. Rusly, N. Adnin, M.Z.A. Khiri, Z.N. Alassan, N. Mohamed, Effects of different sintering temperatures on thermal, physical, and morphological of SiO2-Na2O-CaO-P2O5 based glass-ceramic system from vitreous and ceramic wastes, Science of Sintering. 51(4) (2019) 377–387.

DOI: 10.2298/sos1904377p

Google Scholar