[1]
N.N. Brushlinsky, M. Ahrens, S.V. Sokolov, P. Wagner, «World fire statistics», CTIF, International Association of Fire and Rescue Services, 22 (2017).
Google Scholar
[2]
Bulletin «World fire statistics», The Geneva Association, 29 (2014).
Google Scholar
[3]
GDP «World bank national accounts data, and OECD national accounts data files», (2018).
Google Scholar
[4]
N.N. Brushlinsky, M. Ahrens, S.V. Sokolov, P. Wagner, «World fire statistics», CTIF, International Association of Fire and Rescue Services, 21 (2016).
Google Scholar
[5]
Y.V. Nikitin, «Indirect method of estimating a fire pool area in a closed compartment», Journal of Fire Sciences, 17/1 (1999) 57–70.
DOI: 10.1177/073490419901700104
Google Scholar
[6]
P.A. Tatem, F.W. Williams, C.C. Ndubizu, D.E. Ramaker, «Influence of complete enclosure on liquid pool fires», Combustion Science and Technology, 45/3–4 (1986) 185–198.
DOI: 10.1080/00102208608923849
Google Scholar
[7]
W.K. Chow, «Studies on closed chamber fires», Journal of Fire Sciences, 13/2 (1995) 89–103.
Google Scholar
[8]
G. Heskestad, «Fires plumes, flame height and air entrainment», Handbook of Fire Protection Engineering, SFPE, Boston, MA, USA, (2003).
DOI: 10.1007/978-1-4939-2565-0_13
Google Scholar
[9]
J.G. Quintiere, Growth of Fire in Building Compartments, Fire Standards and Safety, American Society for Testing and Material, West Conshohocken, PA, USA, (1976).
DOI: 10.1520/stp37206s
Google Scholar
[10]
A. Cowlard, W. Jahn, C. Abecassis-Empis, G. Rein, J.L. Torero, «Sensor assisted fire fighting», Fire Technology, 46/3 (2010) 719–741.
DOI: 10.1007/s10694-008-0069-1
Google Scholar
[11]
G. Kagou, B. Kola, R. Mouangue, «CFD studies of the propagation and extinction of flame in an under-ventilated and over-ventilated enclosure», Journal of Taibah University for Science, 10/3 (2016) 393–402.
DOI: 10.1016/j.jtusci.2015.04.010
Google Scholar
[12]
A. Mbainguebem, R. Mouangue, B.T. Bianzeube, «CFD studies of soot production in a coflow laminar diffusion flame under conditions of micro-gravity in fire safety», Journal of Taibah University for Science, 11/4 (2017) 566–575.
DOI: 10.1016/j.jtusci.2015.12.007
Google Scholar
[13]
R. Mouangue, P.M. Onguene, J.T. Zaida, H.P.F. Ekobena, «Numerical investigation of critical velocity in reduced scale tunnel fire with constant heat release rate», Journal of Combustion, 2017/7125237 (2017).
DOI: 10.1155/2017/7125237
Google Scholar
[14]
O. Sugawa, K. Kawagoe, Y. Oka, I. Ogahara, «Burning behavior in a poorly-ventilated compartment fire -ghosting fire-«, Fire Science and Technology, 9/2 (1989) 5–2.
DOI: 10.3210/fst.9.2_5
Google Scholar
[15]
Y. Utiskul, J.G. Quintiere, A.S. Rangwala, B.A. Ringwelski, K. Wakatsuki, T. Naruse, «Compartment fire phenomena under limited ventilation», Fire Safety Journal, 40/4 (2005) 367–390.
DOI: 10.1016/j.firesaf.2005.02.002
Google Scholar
[16]
L. Hu, K. Lu, M. Delichatsios, L. He, F. Tang, «An experimental investigation and statistical characterization of intermittent flame ejecting behavior of enclosure fires with an opening», Combustion and Flame, 159/3 (2012) 1178–1184.
DOI: 10.1016/j.combustflame.2011.09.018
Google Scholar
[17]
F. Tang, L.H. Hu, M.A. Delichatsios, K.H. Lu, W. Zhu, «Experimental study on flame height and temperature profile of buoyant window spill plume from an under-ventilated compartment fire», International Journal of Heat and Mass Transfer, 55/1–3 (2012) 93–101.
DOI: 10.1016/j.ijheatmasstransfer.2011.08.045
Google Scholar
[18]
J.G. Quintiere, «Fire behavior in building compartments», Proceedings of the Combustion Institute, 29/1 (2002) 181–193.
DOI: 10.1016/s1540-7489(02)80027-x
Google Scholar
[19]
M.P. Onguene, R. Mouangue, T.J. Zaida, M. Obounou, F.H. Ekobena, «Building fire: experimental and numerical studies on behaviour of flows at opening», Journal of Combustion, 2019 (2019).
DOI: 10.1155/2019/2535073
Google Scholar
[20]
J. Prahl, H.W. Emmons, «Fire induced flow through an opening», Combustion and Flame, 25 (1975) 369–385.
DOI: 10.1016/0010-2180(75)90109-1
Google Scholar
[21]
E.E. Zukoski, T. Kubota, B. Cetegen, «Entrainment in fire plumes», Fire Safety Journal, 3/2 (1981) 107–121.
DOI: 10.1016/0379-7112(81)90037-0
Google Scholar
[22]
J.A. Rockett, «Fire induced gas flow in an enclosure», Combustion Science and Technology, 12/4–6 (1976) 165–175.
DOI: 10.1080/00102207608946717
Google Scholar
[23]
B. Pospelov, V. Andronov, E. Rybka, R. Meleshchenko, P. Borodych, Studying the recurrent diagrams of carbon monoxide concentration at early ignitions in premises. Eastern-European Journal of Enterprise, 3/9 (93) (2018) 34–40.
DOI: 10.15587/1729-4061.2018.133127
Google Scholar
[24]
V. Andronov, B. Pospelov, E. Rybka, Development of a method to improve the performance speed of maximal fire detectors. Eastern-European Journal of Enterprise Technologies, 2 (9 (86)) (2017) 32–37.
DOI: 10.15587/1729-4061.2017.96694
Google Scholar
[25]
B. Pospelov, V. Andronov, E. Rybka, S. Skliarov, Design of fire detectors capable of self-adjusting by ignition. Eastern-European Journal of Enterprise Technologies, 4 (9 (88)) (2017) 53–59.
DOI: 10.15587/1729-4061.2017.108448
Google Scholar
[26]
V. Andronov, B. Pospelov, E. Rybka, S. Skliarov, Examining the learning fire detectors under real conditions of application. Eastern-European Journal of Enterprise Technologies, 3 (9 (87)) (2017) 53–59.
DOI: 10.15587/1729-4061.2017.101985
Google Scholar
[27]
B. Pospelov, V. Andronov, E. Rybka, O. Krainiukov, K. Karpets, O. Pirohov, I. Semenyshyna, R. Kapitan, A. Promska, O. Horbov, Development of the correlation method for operative detection of recurrent states. Eastern-European Journal of Enterprise, 6/4 (102) (2019) 39–46.
DOI: 10.15587/1729-4061.2019.187252
Google Scholar
[28]
B. Pospelov, E. Rybka, R. Meleshchenko, O. Krainiukov, I. Biryukov, T. Butenko, O. Yashchenko, Yu. Bezuhla, K. Karpets, R. Vasylchenko, Short-term fire forecast based on air state gain recurrency and zero-order Brown model. Eastern-European Journal of Enterprise, 3/10 (111) (2021) 27–33.
DOI: 10.15587/1729-4061.2021.233606
Google Scholar
[29]
B. Pospelov, E. Rybka, O. Krainiukov, O. Yashchenko, Y. Bezuhla, S. Bielai, E. Kochanov, S. Hryshko, E. Poltavski, O. Nepsha, Short-term forecast of fire in the premises based on modification of the Brown's zero-order model. Eastern-European Journal of Enterprise Technologies, 4/10 (112) (2021) 52–58.
DOI: 10.15587/1729-4061.2021.238555
Google Scholar
[30]
B. Pospelov, E. Rybka, A. Savchenko, O. Dashkovska, S. Harbuz, E. Naden, I. Chornomaz, S. Hryshko, O. Nepsha, Peculiarities of amplitude spectra of the third order for the early detection of indoor fires. EEJET, 5/10 (119) (2022) 49–56.
DOI: 10.15587/1729-4061.2022.265781
Google Scholar
[31]
B. Pospelov, E. Rybka, M. Samoilov, I. Morozov, Y. Bezuhla, T. Butenko, Y. Mykhailovska, O. Bondarenko, J. Veretennikova, Defining the features of amplitude and phase spectra of dangerous factors of gas medium during the ignition of materials in the premises. EEJET, 2 (10 (116)) (2022) 57–65.
DOI: 10.15587/1729-4061.2022.254500
Google Scholar
[32]
B. Pospelov, V. Andronov, E. Rybka, L. Chubko, Y. Bezuhla, S. Gordiichuk, T. Lutsenko, N. Suriadna, S. Hryshko, T. Kushchova, Revealing the peculiarities of average bicoherence of frequencies in the spectra of dangerous parameters of the gas environment during fire. EEJET, 1/10 (121) (2023) 46–54.
DOI: 10.15587/1729-4061.2023.272949
Google Scholar
[33]
V. Sadkovyi, B. Pospelov, E. Rybka, B. Kreminskyi, O. Yashchenko, Y. Bezuhla, , E. Darmofal, E. Kochanov, S. Hryshko, I. Kozynska, Development of a method for assessing the reliability of fire detection in premises. Eastern-European Journal of Enterprise Technologies, 3 (10 (117)) (2022) 56–62.
DOI: 10.15587/1729-4061.2022.259493
Google Scholar
[34]
B. Pospelov, E. Rybka, D. Polkovnychenko, I. Myskovets, Y. Bezuhla, T. Butenko, S. Harbuz, Comparison of bicoherence on the ensemble of realizations and a selective evaluation of the bispectrum of the dynamics of dangerous parameters of the gas medium during fire. EEJET, 2/10(122) (2023) 14–21.
DOI: 10.15587/1729-4061.2023.276779
Google Scholar
[35]
B. Pospelov, V. Andronov, E. Rybka, Y. Bezuhla, , O. Liashevska, T. Butenko, E. Darmofal, S. Hryshko, I. Kozynska, Y. Bielashov, Empirical cumulative distribution function of the characteristic sign of the gas environment during fire. EEJET, 4 (10 (118)) (2022) 60–66.
DOI: 10.15587/1729-4061.2022.263194
Google Scholar
[36]
S. Vambol, V. Vambol, O. Kondratenko, Y. Suchikova, O. Hurenko, Assessment of improvement of ecological safety of power plants by arranging the system of pollutant neutralization. Eastern-European Journal of Enterprise Technologies, 3/10(87) (2017) 63–73.
DOI: 10.15587/1729-4061.2017.102314
Google Scholar
[37]
V. Barannik, S. Sidchenko, N. Barannik, V. Barannik, Development of the method for encoding service data in cryptocompression image representation systems. Eastern-European Journal of Enterprise Technologies, 3 (2021) 112–124.
DOI: 10.15587/1729-4061.2021.235521
Google Scholar
[38]
K. McGrattan, S. Hostikka, R. McDermott, J. Floyd, C. Weinschenk, K. Overholt, Fire Dynamics Simulator Technical Reference Guide, National Institute of Standards and Technology, 3/6 (2016).
DOI: 10.6028/nist.sp.1018e6
Google Scholar
[39]
Pasport. Spovishchuvach pozeznyi teplovyi tochkovyi. Arton, 7 [in Ukrainian].
Google Scholar
[40]
Pasport. Spovishchuvach pozeznyi dymovyi tochkovyi optychnyi. Arton, 8 [in Ukrainian].
Google Scholar
[41]
Optical/Heat Multisensor Detector. Discovery. Issue, 1 (2019) 4.
Google Scholar