Experimental Study of Combustion Characteristics of Typical Material in a Non-Hermetic Room

Article Preview

Abstract:

The results of experimental study of combustion peculiarities of typical materials (alcohol, paper, wood and textiles) in a small-sized unsealed chamber are presented. By the method of exponential filtering of measurements by traditional fire sensors of temperature, smoke density and carbon monoxide concentration of the gaseous medium in the ceiling area of the experimental chamber, the combustion peculiarities of these materials were revealed. It is established that the dynamics of temperature, smoke density and gas medium concentration in the ceiling area of the chamber during the ignition of alcohol, paper, wood and textiles has a complex and non-stationary character. This character of dynamics is caused by complex and invisible mechanisms of interaction at the molecular and macroscopic levels of combustion materials with the gas medium of the chamber. It was found that the beginning of combustion of materials is characterized by the signs of appearance of the trend of growth and increase of fluctuations of temperature, smoke density and carbon monoxide concentration of the gas medium. These signs are representative, which allows recommending them for current detection of material ignition in order to prevent fire in the premises.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

131-138

Citation:

Online since:

February 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] N.N. Brushlinsky, M. Ahrens, S.V. Sokolov, P. Wagner, «World fire statistics», CTIF, International Association of Fire and Rescue Services, 22 (2017).

Google Scholar

[2] Bulletin «World fire statistics», The Geneva Association, 29 (2014).

Google Scholar

[3] GDP «World bank national accounts data, and OECD national accounts data files», (2018).

Google Scholar

[4] N.N. Brushlinsky, M. Ahrens, S.V. Sokolov, P. Wagner, «World fire statistics», CTIF, International Association of Fire and Rescue Services, 21 (2016).

Google Scholar

[5] Y.V. Nikitin, «Indirect method of estimating a fire pool area in a closed compartment», Journal of Fire Sciences, 17/1 (1999) 57–70.

DOI: 10.1177/073490419901700104

Google Scholar

[6] P.A. Tatem, F.W. Williams, C.C. Ndubizu, D.E. Ramaker, «Influence of complete enclosure on liquid pool fires», Combustion Science and Technology, 45/3–4 (1986) 185–198.

DOI: 10.1080/00102208608923849

Google Scholar

[7] W.K. Chow, «Studies on closed chamber fires», Journal of Fire Sciences, 13/2 (1995) 89–103.

Google Scholar

[8] G. Heskestad, «Fires plumes, flame height and air entrainment», Handbook of Fire Protection Engineering, SFPE, Boston, MA, USA, (2003).

DOI: 10.1007/978-1-4939-2565-0_13

Google Scholar

[9] J.G. Quintiere, Growth of Fire in Building Compartments, Fire Standards and Safety, American Society for Testing and Material, West Conshohocken, PA, USA, (1976).

DOI: 10.1520/stp37206s

Google Scholar

[10] A. Cowlard, W. Jahn, C. Abecassis-Empis, G. Rein, J.L. Torero, «Sensor assisted fire fighting», Fire Technology, 46/3 (2010) 719–741.

DOI: 10.1007/s10694-008-0069-1

Google Scholar

[11] G. Kagou, B. Kola, R. Mouangue, «CFD studies of the propagation and extinction of flame in an under-ventilated and over-ventilated enclosure», Journal of Taibah University for Science, 10/3 (2016) 393–402.

DOI: 10.1016/j.jtusci.2015.04.010

Google Scholar

[12] A. Mbainguebem, R. Mouangue, B.T. Bianzeube, «CFD studies of soot production in a coflow laminar diffusion flame under conditions of micro-gravity in fire safety», Journal of Taibah University for Science, 11/4 (2017) 566–575.

DOI: 10.1016/j.jtusci.2015.12.007

Google Scholar

[13] R. Mouangue, P.M. Onguene, J.T. Zaida, H.P.F. Ekobena, «Numerical investigation of critical velocity in reduced scale tunnel fire with constant heat release rate», Journal of Combustion, 2017/7125237 (2017).

DOI: 10.1155/2017/7125237

Google Scholar

[14] O. Sugawa, K. Kawagoe, Y. Oka, I. Ogahara, «Burning behavior in a poorly-ventilated compartment fire -ghosting fire-«, Fire Science and Technology, 9/2 (1989) 5–2.

DOI: 10.3210/fst.9.2_5

Google Scholar

[15] Y. Utiskul, J.G. Quintiere, A.S. Rangwala, B.A. Ringwelski, K. Wakatsuki, T. Naruse, «Compartment fire phenomena under limited ventilation», Fire Safety Journal, 40/4 (2005) 367–390.

DOI: 10.1016/j.firesaf.2005.02.002

Google Scholar

[16] L. Hu, K. Lu, M. Delichatsios, L. He, F. Tang, «An experimental investigation and statistical characterization of intermittent flame ejecting behavior of enclosure fires with an opening», Combustion and Flame, 159/3 (2012) 1178–1184.

DOI: 10.1016/j.combustflame.2011.09.018

Google Scholar

[17] F. Tang, L.H. Hu, M.A. Delichatsios, K.H. Lu, W. Zhu, «Experimental study on flame height and temperature profile of buoyant window spill plume from an under-ventilated compartment fire», International Journal of Heat and Mass Transfer, 55/1–3 (2012) 93–101.

DOI: 10.1016/j.ijheatmasstransfer.2011.08.045

Google Scholar

[18] J.G. Quintiere, «Fire behavior in building compartments», Proceedings of the Combustion Institute, 29/1 (2002) 181–193.

DOI: 10.1016/s1540-7489(02)80027-x

Google Scholar

[19] M.P. Onguene, R. Mouangue, T.J. Zaida, M. Obounou, F.H. Ekobena, «Building fire: experimental and numerical studies on behaviour of flows at opening», Journal of Combustion, 2019 (2019).

DOI: 10.1155/2019/2535073

Google Scholar

[20] J. Prahl, H.W. Emmons, «Fire induced flow through an opening», Combustion and Flame, 25 (1975) 369–385.

DOI: 10.1016/0010-2180(75)90109-1

Google Scholar

[21] E.E. Zukoski, T. Kubota, B. Cetegen, «Entrainment in fire plumes», Fire Safety Journal, 3/2 (1981) 107–121.

DOI: 10.1016/0379-7112(81)90037-0

Google Scholar

[22] J.A. Rockett, «Fire induced gas flow in an enclosure», Combustion Science and Technology, 12/4–6 (1976) 165–175.

DOI: 10.1080/00102207608946717

Google Scholar

[23] B. Pospelov, V. Andronov, E. Rybka, R. Meleshchenko, P. Borodych, Studying the recurrent diagrams of carbon monoxide concentration at early ignitions in premises. Eastern-European Journal of Enterprise, 3/9 (93) (2018) 34–40.

DOI: 10.15587/1729-4061.2018.133127

Google Scholar

[24] V. Andronov, B. Pospelov, E. Rybka, Development of a method to improve the performance speed of maximal fire detectors. Eastern-European Journal of Enterprise Technologies, 2 (9 (86)) (2017) 32–37.

DOI: 10.15587/1729-4061.2017.96694

Google Scholar

[25] B. Pospelov, V. Andronov, E. Rybka, S. Skliarov, Design of fire detectors capable of self-adjusting by ignition. Eastern-European Journal of Enterprise Technologies, 4 (9 (88)) (2017) 53–59.

DOI: 10.15587/1729-4061.2017.108448

Google Scholar

[26] V. Andronov, B. Pospelov, E. Rybka, S. Skliarov, Examining the learning fire detectors under real conditions of application. Eastern-European Journal of Enterprise Technologies, 3 (9 (87)) (2017) 53–59.

DOI: 10.15587/1729-4061.2017.101985

Google Scholar

[27] B. Pospelov, V. Andronov, E. Rybka, O. Krainiukov, K. Karpets, O. Pirohov, I. Semenyshyna, R. Kapitan, A. Promska, O. Horbov, Development of the correlation method for operative detection of recurrent states. Eastern-European Journal of Enterprise, 6/4 (102) (2019) 39–46.

DOI: 10.15587/1729-4061.2019.187252

Google Scholar

[28] B. Pospelov, E. Rybka, R. Meleshchenko, O. Krainiukov, I. Biryukov, T. Butenko, O. Yashchenko, Yu. Bezuhla, K. Karpets, R. Vasylchenko, Short-term fire forecast based on air state gain recurrency and zero-order Brown model. Eastern-European Journal of Enterprise, 3/10 (111) (2021) 27–33.

DOI: 10.15587/1729-4061.2021.233606

Google Scholar

[29] B. Pospelov, E. Rybka, O. Krainiukov, O.  Yashchenko, Y. Bezuhla, S. Bielai, E. Kochanov, S. Hryshko, E. Poltavski, O. Nepsha, Short-term forecast of fire in the premises based on modification of the Brown's zero-order model. Eastern-European Journal of Enterprise Technologies, 4/10 (112) (2021) 52–58.

DOI: 10.15587/1729-4061.2021.238555

Google Scholar

[30] B. Pospelov, E. Rybka, A. Savchenko, O. Dashkovska, S. Harbuz, E. Naden, I. Chornomaz, S. Hryshko, O. Nepsha, Peculiarities of amplitude spectra of the third order for the early detection of indoor fires. EEJET, 5/10 (119) (2022) 49–56.

DOI: 10.15587/1729-4061.2022.265781

Google Scholar

[31] B. Pospelov, E. Rybka, M. Samoilov, I. Morozov, Y. Bezuhla, T. Butenko, Y. Mykhailovska, O. Bondarenko, J. Veretennikova, Defining the features of amplitude and phase spectra of dangerous factors of gas medium during the ignition of materials in the premises. EEJET, 2 (10 (116)) (2022) 57–65.

DOI: 10.15587/1729-4061.2022.254500

Google Scholar

[32] B. Pospelov, V. Andronov, E. Rybka, L. Chubko, Y. Bezuhla, S. Gordiichuk, T. Lutsenko, N. Suriadna, S. Hryshko, T. Kushchova, Revealing the peculiarities of average bicoherence of frequencies in the spectra of dangerous parameters of the gas environment during fire. EEJET, 1/10 (121) (2023) 46–54.

DOI: 10.15587/1729-4061.2023.272949

Google Scholar

[33] V. Sadkovyi, B. Pospelov, E. Rybka, B. Kreminskyi, O. Yashchenko, Y. Bezuhla, , E. Darmofal, E. Kochanov, S. Hryshko, I. Kozynska, Development of a method for assessing the reliability of fire detection in premises. Eastern-European Journal of Enterprise Technologies, 3 (10 (117)) (2022) 56–62.

DOI: 10.15587/1729-4061.2022.259493

Google Scholar

[34] B. Pospelov, E. Rybka, D. Polkovnychenko, I.  Myskovets, Y. Bezuhla, T. Butenko, S. Harbuz, Comparison of bicoherence on the ensemble of realizations and a selective evaluation of the bispectrum of the dynamics of dangerous parameters of the gas medium during fire. EEJET, 2/10(122) (2023) 14–21.

DOI: 10.15587/1729-4061.2023.276779

Google Scholar

[35] B. Pospelov, V. Andronov, E. Rybka, Y. Bezuhla, , O. Liashevska, T. Butenko, E. Darmofal, S. Hryshko, I. Kozynska, Y. Bielashov, Empirical cumulative distribution function of the characteristic sign of the gas environment during fire. EEJET, 4 (10 (118)) (2022) 60–66.

DOI: 10.15587/1729-4061.2022.263194

Google Scholar

[36] S. Vambol, V. Vambol, O. Kondratenko, Y. Suchikova, O. Hurenko, Assessment of improvement of ecological safety of power plants by arranging the system of pollutant neutralization. Eastern-European Journal of Enterprise Technologies, 3/10(87) (2017) 63–73.

DOI: 10.15587/1729-4061.2017.102314

Google Scholar

[37] V. Barannik, S. Sidchenko, N. Barannik, V. Barannik, Development of the method for encoding service data in cryptocompression image representation systems. Eastern-European Journal of Enterprise Technologies, 3 (2021) 112–124.

DOI: 10.15587/1729-4061.2021.235521

Google Scholar

[38] K. McGrattan, S. Hostikka, R. McDermott, J. Floyd, C. Weinschenk, K. Overholt, Fire Dynamics Simulator Technical Reference Guide, National Institute of Standards and Technology, 3/6 (2016).

DOI: 10.6028/nist.sp.1018e6

Google Scholar

[39] Pasport. Spovishchuvach pozeznyi teplovyi tochkovyi. Arton, 7 [in Ukrainian].

Google Scholar

[40] Pasport. Spovishchuvach pozeznyi dymovyi tochkovyi optychnyi. Arton, 8 [in Ukrainian].

Google Scholar

[41] Optical/Heat Multisensor Detector. Discovery. Issue, 1 (2019) 4.

Google Scholar