Characterization of Natural and Synthetic Dyes for Large-Scale Dye-Sensitized Solar Cells

Article Preview

Abstract:

Photosensitizers have an important role in increasing the ability to capture light. One of the main components of dye-sensitized solar cells (DSSCs) is dye. In general, DSSC fabrication uses synthetic dyes such as N719 and DN-F01. However, synthetic dyes have the potential to have negative impacts on human health and the environment. In this research, DSSC fabrication was carried out using natural dyes and synthetic dyes at large sizes (one cell with an active area of 18 cm2 and two cells with an active area of 15 cm2). The natural dyes used are anthocyanin from red dragon fruit (dragon fruit dyes) and curcumin from turmeric powder (turmeric dyes). Natural and synthetic dyes were characterized using UV-Vis and FTIR spectroscopy. Meanwhile, DSSC performance was characterized by the I-V meter. The best electrical performance for natural dyes was obtained with an active area of 15 cm2 which was sensitized using turmeric dyes with a performance of Eff = 0.020%, Jsc = 0.142 mA.cm-2, Voc = 0.372 V, and FF = 0.461. Furthermore, the best electrical performance for synthetic dyes was obtained with an active area of 15 cm2 which was sensitized using N719 with a performance of Eff = 0.264%, Jsc = 1.303 mA.cm-2, Voc = 0.510 V, and FF = 0.398. Based on these results, natural dyes are less effective than synthetic dyes, but natural dyes are more environmentally friendly and cheap.

You might also be interested in these eBooks

Info:

* - Corresponding Author

[1] J. Gong, K. Sumathy, Q. Qiao, Z. Zhou, Review on dye-sensitized solar cells (DSSCs): Advanced techniques and research trends, Renew. Sustain. Energy Rev. 68 (2017) 234–246.

DOI: 10.1016/j.rser.2016.09.097

Google Scholar

[2] S.N. Karthick, K. V. Hemalatha, S.K. Balasingam, F. Manik Clinton, S. Akshaya, H.J. Kim, Dye-sensitized solar cells: History, components, configuration, and working principle, Interfacial Eng. Funct. Mater. Dye. Sol. Cells. (2019) 1–16. https://doi.org/10.1002/ 9781119557401.ch1.

DOI: 10.1002/9781119557401.ch1

Google Scholar

[3] P.D. Nixon, R. Baby, N.M. Kumar, N. Ananthi, Natural Dyes from Ornamental Plants as Sensitizers for Dye-Sensitized Solar Cells (DSSCs): A Review on the Structure-Activity Relationships (SARs) between Power Conversion Efficiencies and Chemical Constituents, Russ. J. Appl. Chem. 94 (2021) 1561–1576.

DOI: 10.1134/S1070427221120016

Google Scholar

[4] N.Y. Amogne, D.W. Ayele, Y.A. Tsigie, Recent advances in anthocyanin dyes extracted from plants for dye sensitized solar cell, Mater. Renew. Sustain. Energy. 9 (2020) 1–16.

DOI: 10.1007/s40243-020-00183-5

Google Scholar

[5] S. Ilic, V. Paunovic, Characteristics of curcumin dye used as a sensitizer in dye-sensitized solar cells, Facta Univ. - Ser. Electron. Energ. 32 (2019) 91–104. https://doi.org/10.2298/ fuee1901091i.

DOI: 10.2298/fuee1901091i

Google Scholar

[6] D.D. Pratiwi, F. Nurosyid, A. Supriyanto, R. Suryana, Optical properties of natural dyes on the dye-sensitized solar cells (DSSC) performance, J. Phys. Conf. Ser. 776 (2016).

DOI: 10.1088/1742-6596/776/1/012007

Google Scholar

[7] A.H. Ahliha, F. Nurosyid, A. Supriyanto, T. Kusumaningsih, The chemical bonds effect of anthocyanin and chlorophyll dyes on TiO2 for dye-sensitized solar cell (DSSC), J. Phys. Conf. Ser. 909 (2017).

DOI: 10.1088/1742-6596/909/1/012013

Google Scholar

[8] I. Nyoman Setiawan, I.A. Dwi Giriantari, W.G. Ariastina, I.B. Alit Swamardika, Natural Dyes Extracted from Bioactive Components of Fruit Waste for Dye-Sensitized Solar Cell, Int. J. Eng. Res. Technol. 13 (2020) 2498–2504.

DOI: 10.37624/ijert/13.9.2020.2498-2504

Google Scholar

[9] N. Burhan, H.P. Uranus, Performance Degradation Model of Dye-Sensitized Solar Cell (DSSC) Using Dye Extracted from Red Dragon Fruit's Flesh, J. Phys. Conf. Ser. 1552 (2020).

DOI: 10.1088/1742-6596/1552/1/012001

Google Scholar

[10] H.J. Kim, D.J. Kim, S.N. Karthick, K. V. Hemalatha, C. Justin Raj, S. Ok, Y. Choe, Curcumin dye extracted from Curcuma longa L. used as sensitizers for efficient dye-sensitized solar cells, Int. J. Electrochem. Sci. 8 (2013) 8320–8328.

DOI: 10.1016/s1452-3981(23)12891-4

Google Scholar

[11] N. Sofyan, F.W. Situmorang, A. Ridhova, A.H. Yuwono, A. Udhiarto, Visible light absorption and photosensitizing characteristics of natural yellow 3 extracted from Curcuma Longa L. for Dye-Sensitized solar cell, IOP Conf. Ser. Earth Environ. Sci. 105 (2018).

DOI: 10.1088/1755-1315/105/1/012073

Google Scholar

[12] D. Sinha, D. De, A. Ayaz, Performance and stability analysis of curcumin dye as a photo sensitizer used in nanostructured ZnO based DSSC, Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 193 (2018) 467–474.

DOI: 10.1016/j.saa.2017.12.058

Google Scholar

[13] T.A. Ruhane, M.T. Islam, M.S. Rahaman, M.M.H. Bhuiyan, J.M.M. Islam, M.K. Newaz, K.A. Khan, M.A. Khan, Photo current enhancement of natural dye sensitized solar cell by optimizing dye extraction and its loading period, Optik (Stuttg). 149 (2017) 174–183.

DOI: 10.1016/j.ijleo.2017.09.024

Google Scholar

[14] T.A. Ruhane, M.T. Islam, M.S. Rahaman, M.M.H. Bhuiyan, J.M.M. Islam, T.I. Bhuiyan, K.A. Khan, M.A. Khan, Impact of photo electrode thickness and annealing temperature on natural dye sensitized solar cell, Sustain. Energy Technol. Assessments. 20 (2017) 72–77.

DOI: 10.1016/j.seta.2017.01.012

Google Scholar

[15] P. Gu, D. Yang, X. Zhu, H. Sun, J. Li, Performance of dye-sensitized solar cells based on natural dyes, Opt. Quantum Electron. 50 (2018) 1–13.

DOI: 10.1007/s11082-018-1485-1

Google Scholar

[16] A.H. Ahliha, F. Nurosyid, A. Supriyanto, T. Kusumaningsih, Optical properties of anthocyanin dyes on TiO2 as photosensitizers for application of dye-sensitized solar cell (DSSC), IOP Conf. Ser. Mater. Sci. Eng. 333 (2018).

DOI: 10.1088/1757-899X/333/1/012018

Google Scholar

[17] N. Puspitasari, G. Prajitno, F.S. Mas Fakarani, G. Yudoyono, Darminto, Anthocyanin Development from Fruit Waste for Dye Sensitized Solar Cell Applications, J. Phys. Conf. Ser. 1951 (2021).

DOI: 10.1088/1742-6596/1951/1/012048

Google Scholar

[18] N.E.H. Diyanahesa, A. Supriyanto, A.H. Ramelan, Improvement of efficiency of dye-sensitized solar cells (DSSC) transparent by optimizing of anthocyanin dyes hybrid dyenamo yellow (DN-F01), AIP Conf. Proc. 2217 (2020).

DOI: 10.1063/5.0000868

Google Scholar

[19] R. Anoua, H. Lifi, S. Touhtouh, M. El Jouad, A. Hajjaji, M. Bakasse, P. Płociennik, A. Zawadzka, Optical and morphological properties of Curcuma longa dye for dye-sensitized solar cells, Environ. Sci. Pollut. Res. 28 (2021) 57860–57871.

DOI: 10.1007/s11356-021-14551-9

Google Scholar

[20] K. Portillo-Cortez, A. Martínez, A. Dutt, G. Santana, N719 Derivatives for Application in a Dye-Sensitized Solar Cell (DSSC): A Theoretical Study, J. Phys. Chem. A. 123 (2019) 10930–10939.

DOI: 10.1021/acs.jpca.9b09024

Google Scholar

[21] Safie Nur Ezyanie, Ludin Norasikin Ahmad, Su'ait Mohd Sukor, Hamid Norul Hisham, Sepeai Suhaila, Ibrahim Mohd Adib, Teridi Mohd Asri Mat, Preliminary Study Of Natural Pigments Photochemical Properties of Curcuma longa L. and Lawsonia inermis L. AS TiO2 Photoelectrode Sensitizer, Malaysian J. Anal. Sci. 19 (2015) 1243–1249.

DOI: 10.1002/9783527690312.ch16

Google Scholar

[22] K. Ahmed Ismail, A. El Askary, M.O. Farea, N.S. Awwad, H.A. Ibrahium, M. Eid Moustapha, A.A. Menazea, Perspectives on composite films of chitosan-based natural products (Ginger, Curcumin, and Cinnamon) as biomaterials for wound dressing, Arab. J. Chem. 15 (2022) 103716.

DOI: 10.1016/j.arabjc.2022.103716

Google Scholar

[23] T. Azizi, Z. Kaddachi, M. Ben Karoui, A.E. Touihri, R. Gharbi, Electrical Characterization and Efficiency Enhancement of Dye Sensitized Solar Cell Using Natural Sensitizer and TiO2Nanoparticles Deposited by Electrophoretic Technique, IEEE J. Photovoltaics. 11 (2021) 1004–1013.

DOI: 10.1109/JPHOTOV.2021.3075322

Google Scholar

[24] S. Wanwong, W. Sangkhun, J. Wootthikanokkhan, The effect of co-sensitization methods between N719 and boron dipyrromethene triads on dye-sensitized solar cell performance, RSC Adv. 8 (2018) 9202–9210.

DOI: 10.1039/c8ra00862k

Google Scholar

[25] W.A. Dhafina, M.Z. Daud, H. Salleh, The sensitization effect of anthocyanin and chlorophyll dyes on optical and photovoltaic properties of zinc oxide based dye-sensitized solar cells, Optik (Stuttg). 207 (2020).

DOI: 10.1016/j.ijleo.2019.163808

Google Scholar

[26] E.C. Prima, H.S. Nugroho, Nugraha, G. Refantero, C. Panatarani, B. Yuliarto, Performance of the dye-sensitized quasi-solid state solar cell with combined anthocyanin-ruthenium photosensitizer, RSC Adv. 10 (2020) 36873–36886.

DOI: 10.1039/d0ra06550a

Google Scholar

[27] A. Omar, M.S. Fakir, K.S. Hamdan, N.H. Rased, N.A. Rahim, Photovoltaic performances and lifetime analysis of TiO2/rGO DSSCs sensitized with Roselle and N719 dyes, IOP Conf. Ser. Mater. Sci. Eng. 1127 (2021) 012041.

DOI: 10.1088/1757-899x/1127/1/012041

Google Scholar

[28] N. Kato, K. Higuchi, H. Tanaka, J. Nakajima, T. Sano, T. Toyoda, Improvement in long-term stability of dye-sensitized solar cell for outdoor use, Sol. Energy Mater. Sol. Cells. 95 (2011) 301–305.

DOI: 10.1016/j.solmat.2010.04.019

Google Scholar

[29] R. Jiang, A. Anderson, P.R.F. Barnes, L. Xiaoe, C. Law, B.C. O'Regan, 2000 Hours Photostability Testing of Dye Sensitised Solar Cells Using a Cobalt Bipyridine Electrolyte, J. Mater. Chem. A. 2 (2014) 4751–4757.

DOI: 10.1039/c4ta00402g

Google Scholar

[30] M.I. Bachtiar, M.N.P. Agustina, L.W. Hariyani, F. Nurosyid, Effect of dye variation on DSSC efficiency, J. Phys. Conf. Ser. 1153 (2019).

DOI: 10.1088/1742-6596/1153/1/012097

Google Scholar

[31] S. Rahman, A. Haleem, M. Siddiq, M.K. Hussain, S. Qamar, S. Hameed, M. Waris, Research on dye sensitized solar cells: recent advancement toward the various constituents of dye sensitized solar cells for efficiency enhancement and future prospects, RSC Adv. 13 (2023) 19508–19529.

DOI: 10.1039/d3ra00903c

Google Scholar

[32] F. Kabir, M.M.H. Bhuiyan, M.R. Hossain, H. Bashar, M.S. Rahaman, M.S. Manir, S.M. Ullah, S.S. Uddin, M.Z.I. Mollah, R.A. Khan, S. Huque, M.A. Khan, Improvement of efficiency of Dye Sensitized Solar Cells by optimizing the combination ratio of Natural Red and Yellow dyes, Optik (Stuttg). 179 (2019) 252–258.

DOI: 10.1016/j.ijleo.2018.10.150

Google Scholar

[33] M. Khan, M.A. Iqbal, M. Malik, S.U.M. Hashmi, S. Bakhsh, M. Sohail, M.T. Qamar, M. Al-Bahrani, R.Y. Capangpangan, A.C. Alguno, J.R. Choi, Improving the efficiency of dye-sensitized solar cells based on rare-earth metal modified bismuth ferrites, Sci. Rep. 13 (2023) 1–14.

DOI: 10.1038/s41598-023-30000-8

Google Scholar

[34] A.R. Woldu, D.W. Ayele, N.G. Habtu, Y.A. Tsigie, Anthocyanin components for dye-sensitized solar cells extracted from Teclea Shimperi fruit as light-harvesting materials, Mater. Sci. Energy Technol. 3 (2020) 889–895.

DOI: 10.1016/j.mset.2020.11.001

Google Scholar

[35] S. Ananthakumar, D. Balaji, J. Ram Kumar, S. Moorthy Babu, Role of co-sensitization in dye-sensitized and quantum dot-sensitized solar cells, Springer International Publishing, 2019.

DOI: 10.1007/s42452-018-0054-3

Google Scholar