[1]
H. Husin, M. Mahidin, Z. Zuhra, and F. Hafita, "H2 evolution on lanthanum and carbon Co-doped NaTaO3 photocatalyst," Bulletin of Chemical Reaction Engineering and Catalysis, vol. 9, no. 2, 2014.
DOI: 10.9767/bcrec.9.2.5530.81-86
Google Scholar
[2]
H. Husin, K. Pontas, Y. Sy, Syawaliah, and Saisa, "Synthesis of nanocrystalline of lanthanum doped NaTaO3 and photocatalytic activity for hydrogen production," Journal of Engineering and Technological Sciences, vol. 46, no. 3, 2014.
DOI: 10.5614/j.eng.technol.sci.2014.46.3.6
Google Scholar
[3]
Meriatna, H. Husin, M. Riza, M. Faisal, Ahmadi, and Sulastri, "Biodiesel production using waste banana peel as renewable base catalyst," Mater Today Proc, 2023.
DOI: 10.1016/j.matpr.2023.02.400
Google Scholar
[4]
L. Zhan, Y. Bo, T. Lin, and Z. Fan, "Development and outlook of advanced nuclear energy technology," Energy Strategy Reviews, vol. 34, 2021.
DOI: 10.1016/j.esr.2021.100630
Google Scholar
[5]
M. Zaki, H. Husin, M.T., P. N. Alam, D. Darmadi, C. M. Rosnelly, and N. Nurhazanah, "Transesterifikasi Minyak Biji Buta-Buta menjadi Biodiesel pada Katalis Heterogen Kalsium Oksida (CaO)," Jurnal Rekayasa Kimia & Lingkungan, vol. 14, no. 1, 2019.
DOI: 10.23955/rkl.v14i1.13495
Google Scholar
[6]
F. Nasution et al., "Conversion of pyrolysis vapors derived from non-biodegradable waste plastics (PET) into valuable fuels using nickel-impregnated HZSM5-70 catalysts," Energy Convers Manag, vol. 273, Dec. 2022.
DOI: 10.1016/j.enconman.2022.116440
Google Scholar
[7]
D. K. Ratnasari, M. A. Nahil, and P. T. Williams, "Catalytic pyrolysis of waste plastics using staged catalysis for production of gasoline range hydrocarbon oils," J Anal Appl Pyrolysis, vol. 124, 2017.
DOI: 10.1016/j.jaap.2016.12.027
Google Scholar
[8]
K. K. Jha and T. T. M. Kannan, "Alternate fuel preparation in low cost from waste plastic: A review," in Materials Today: Proceedings, 2020.
DOI: 10.1016/j.matpr.2020.09.802
Google Scholar
[9]
E. Erawati, H. Hamid, and A. A. Ilma, "Pyrolysis Process of Mixed Polypropylene (PP) and High-Density Polyethylene (HDPE) Waste with Natural Zeolite as Catalyst," Molekul, vol. 13, no. 2, 2018.
DOI: 10.20884/1.jm.2018.13.2.400
Google Scholar
[10]
Hendrawati, A. R. Liandi, M. Solehah, M. H. Setyono, I. Aziz, and Y. D. I. Siregar, "Pyrolysis of PP and HDPE from plastic packaging waste into liquid hydrocarbons using natural zeolite Lampung as a catalyst," Case Studies in Chemical and Environmental Engineering, vol. 7, 2023.
DOI: 10.1016/j.cscee.2022.100290
Google Scholar
[11]
L. Maulinda et al., "Effects of temperature and times on the product distribution of bio-oils derived from Typha latifolia pyrolysis as renewable energy," Results in Engineering, vol. 18, p.101163, 2023.
DOI: 10.1016/j.rineng.2023.101163
Google Scholar
[12]
K. Soongprasit, V. Sricharoenchaikul, and D. Atong, "Catalytic fast pyrolysis of Millettia (Pongamia) pinnata waste using zeolite Y," J Anal Appl Pyrolysis, vol. 124, 2017.
DOI: 10.1016/j.jaap.2016.12.002
Google Scholar
[13]
A. Ahamed et al., "In situ catalytic reforming of plastic pyrolysis vapors using MSW incineration ashes," Environmental Pollution, 2021.
DOI: 10.1016/j.envpol.2021.116681
Google Scholar
[14]
J.M. Saad and P.T. Williams, "Catalytic dry reforming of waste plastics from different waste treatment plants for production of synthesis gases," Waste Management, vol. 58, 2016.
DOI: 10.1016/j.wasman.2016.09.011
Google Scholar
[15]
M.P. Lapinski, S. Metro, P.R. Pujadó, and M. Moser, "Catalytic reforming in petroleum processing," in Handbook of Petroleum Processing, vol. 1, 2015.
DOI: 10.1007/978-3-319-14529-7_1
Google Scholar
[16]
H. Husin et al., "Conversion of polypropylene-derived crude pyrolytic oils using hydrothermal autoclave reactor and ni/aceh natural zeolite as catalysts," Heliyon, vol. 9, no. 4, 2023.
DOI: 10.1016/j.heliyon.2023.e14880
Google Scholar
[17]
N. A. Shahdan, V. Balasundram, N. Ibrahim, and R. Isha, "Catalytic co-pyrolysis of biomass and plastic wastes over metal-modified HZSM-5: A mini critical review," Mater Today Proc, vol. 57, 2022.
DOI: 10.1016/j.matpr.2021.11.215
Google Scholar
[18]
A. Imran, E. A. Bramer, K. Seshan, and G. Brem, "An overview of catalysts in biomass pyrolysis for production of biofuels," Biofuel Research Journal, vol. 5, no. 4. 2018.
DOI: 10.18331/BRJ2018.5.4.2
Google Scholar
[19]
S. Mardiana, N. J. Azhari, T. Ilmi, and G. T. M. Kadja, "Hierarchical zeolite for biomass conversion to biofuel: A review," Fuel, vol. 309. 2022.
DOI: 10.1016/j.fuel.2021.122119
Google Scholar
[20]
C. Areeprasert and C. Khaobang, "Pyrolysis and catalytic reforming of ABS/PC and PCB using biochar and e-waste char as alternative green catalysts for oil and metal recovery," Fuel Processing Technology, 2018.
DOI: 10.1016/j.fuproc.2018.10.006
Google Scholar
[21]
L. Maulinda et al., "The Influence of Pyrolysis Time and Temperature on the Composition and Properties of Bio-Oil Prepared from Tanjong Leaves (Mimusops elengi)," Sustainability (Switzerland), vol. 15, no. 18, 2023.
DOI: 10.3390/su151813851
Google Scholar
[22]
H. Husin, T. M. Asnawi, A. Firdaus, H. Husaini, I. Ibrahim, and F. Hasfita, "Solid Catalyst Nanoparticles derived from Oil-Palm Empty Fruit Bunches (OP-EFB) as a Renewable Catalyst for Biodiesel Production," in IOP Conference Series: Materials Science and Engineering, 2018.
DOI: 10.1088/1757-899X/358/1/012008
Google Scholar
[23]
A. Mulkan, N. W. M. Zulkifli, H. Husin, Ahmadi, I. Dahlan, and S. Syafiie, "Development of jackfruit (Artocarpus heterophyllus) peel waste as a new solid catalyst: Biodiesel synthesis, optimization and characterization," Process Safety and Environmental Protection, vol. 177, 2023.
DOI: 10.1016/j.psep.2023.07.021
Google Scholar
[24]
T. H. Đặng, X. H. Nguyễn, C. L. Chou, and B. H. Chen, "Preparation of cancrinite-type zeolite from diatomaceous earth as transesterification catalysts for biodiesel production," Renew Energy, vol. 174, 2021.
DOI: 10.1016/j.renene.2021.04.068
Google Scholar
[25]
T. J. Mabidi, O. U. Izevbekhai, W. M. Gitari, R. Mudzielwana, and W. B. Ayinde, "Preparation and characterization of acid-leached diatomaceous earth for application in the treatment of oily wastewater," Physics and Chemistry of the Earth, Parts A/B/C, vol. 132, p.103497, 2023.
DOI: 10.1016/j.pce.2023.103497
Google Scholar
[26]
G. Yan, X. Jing, H. Wen, and S. Xiang, "Thermal cracking of virgin and waste plastics of PP and LDPE in a semibatch reactor under atmospheric pressure," Energy and Fuels, vol. 29, no. 4, 2015.
DOI: 10.1021/ef502919f
Google Scholar
[27]
Subhashini and T. Mondal, "Experimental investigation on slow thermal pyrolysis of real-world plastic wastes in a fixed bed reactor to obtain aromatic rich fuel grade liquid oil," J Environ Manage, vol. 344, 2023.
DOI: 10.1016/j.jenvman.2023.118680
Google Scholar
[28]
Subhashini and T. Mondal, "Experimental investigation on slow thermal pyrolysis of real-world plastic wastes in a fixed bed reactor to obtain aromatic rich fuel grade liquid oil," J Environ Manage, vol. 344, 2023.
DOI: 10.1016/j.jenvman.2023.118680
Google Scholar
[29]
X. Zhang, H. Lei, G. Yadavalli, L. Zhu, Y. Wei, and Y. Liu, "Gasoline-range hydrocarbons produced from microwave-induced pyrolysis of low-density polyethylene over ZSM-5," Fuel, 2015.
DOI: 10.1016/j.fuel.2014.12.013
Google Scholar
[30]
E. P. Rohan, N. K. Hettiarachchi, and B. Sumith, "Conversion of waste polypropylene into hydrocarbon fuel – analysis of the effect of batch size on reaction time and liquid yield," Engineer: Journal of the Institution of Engineers, Sri Lanka, vol. 48, no. 3, 2015.
DOI: 10.4038/engineer.v48i3.6841
Google Scholar
[31]
M. Syamsiro et al., "Fuel oil production from municipal plastic wastes in sequential pyrolysis and catalytic reforming reactors," in Energy Procedia, 2014. doi:10.1016/j.egypro. 2014.01.212.
DOI: 10.1016/j.egypro.2014.01.212
Google Scholar
[32]
M. Syamsiro, D. Y. Mathias, H. Saptoadi, D. R. Sawitri, A. S. Nizami, and M. Rehan, "Pyrolysis of Compact Disc (CD) Case Wastes to Produce Liquid Fuel as a Renewable Source of Electricity Generation," Energy Procedia, vol. 145, p.484–489, 2018.
DOI: 10.1016/j.egypro.2018.04.096
Google Scholar
[33]
A. Y. Waziri, A. A. Osigbesan, F. N. Dabai, S. M. Shuwa, A. Y. Atta, and B. Y. Jibril, "Catalytic reforming of gaseous products from pyrolysis of low-density polyethylene over iron-modified ZSM-5 catalysts," Appl Petrochem Res, vol. 9, no. 2, 2019.
DOI: 10.1007/s13203-019-0230-4
Google Scholar
[34]
U. e. S. Amjad et al., "Catalytic cracking of polystyrene pyrolysis oil: Effect of Nb2O5 and NiO/Nb2O5 catalyst on the liquid product composition," Waste Management, vol. 141, 2022.
DOI: 10.1016/j.wasman.2022.02.002
Google Scholar
[35]
H. Jia, H. Ben, Y. Luo, and R. Wang, "Catalytic fast pyrolysis of poly (ethylene terephthalate) (PET) with zeolite and nickel chloride," Polymers (Basel), vol. 12, no. 3, 2020.
DOI: 10.3390/polym12030705
Google Scholar
[36]
B. Roozbehani, M. Motevassel, M. Mirdrikvand, S. I. Moqadam, and A. Kharaghani, "Gasoline production from a polymeric urban disposal mixture using silica–alumina catalyst," Clean Technol Environ Policy, vol.19, no.1, pp.123-136, Jan. 2017.
DOI: 10.1007/s10098-016-1196-x
Google Scholar
[37]
G. Y. Nazarova, E. N. Ivashkina, E. D. Ivanchina, and M. Y. Mezhova, "A Model of Catalytic Cracking: Catalyst Deactivation Induced by Feedstock and Process Variables," Catalysts, vol. 12, no. 1, 2022.
DOI: 10.3390/catal12010098
Google Scholar
[38]
Y. Cui, Y. Zhang, L. Cui, Y. Liu, B. Li, and W. Liu, "Microwave-assisted pyrolysis of polypropylene plastic for liquid oil production," J Clean Prod, vol. 411, 2023.
DOI: 10.1016/j.jclepro.2023.137303
Google Scholar
[39]
N. Dutta and A. Gupta, "An experimental study on conversion of high-density polyethylene and polypropylene to liquid fuel," Clean Technol Environ Policy, vol. 23, no. 7, 2021.
DOI: 10.1007/s10098-021-02121-z
Google Scholar