[1]
Islam, M.T., Al Mamun, M.A., Halim, A.F.M.F., Peila, R., Sanchez Ramirez, D.O., Current trends in textile wastewater treatment—bibliometric review, Environmental Science and Pollution Research 31(13) (2024) 19166-19184.
DOI: 10.1007/s11356-024-32454-3
Google Scholar
[2]
Kallawar, G.A., Bhanvase, B.A., A review on existing and emerging approaches for textile wastewater treatments: challenges and future perspectives, Environmental Science and Pollution Research 31(2) (2024) 1748-1789.
DOI: 10.1007/s11356-023-31175-3
Google Scholar
[3]
Kasavan, S., Yusoff, S., Guan, N.C., Zaman, N.S.K., Fakri, M.F.R., Global trends of textile waste research from 2005 to 2020 using bibliometric analysis, Environmental Science and Pollution Research 28(33) (2021) 44780-44794.
DOI: 10.1007/s11356-021-15303-5
Google Scholar
[4]
Jing, H.-P., Wang, C.-C., Zhang, Y.-W., Wang, P., Li, R., Photocatalytic degradation of methylene blue in ZIF-8, RSC Adv. 4(97) (2014) 54454-54462.
DOI: 10.1039/c4ra08820d
Google Scholar
[5]
Ong, C.B., Ng, L.Y., Mohammad, A.W., A review of ZnO nanoparticles as solar photocatalysts: Synthesis, mechanisms and applications, Renewable and Sustainable Energy Reviews 81 (2018) 536-551.
DOI: 10.1016/j.rser.2017.08.020
Google Scholar
[6]
Gatou, M.-A., Syrrakou, A., Lagopati, N., Pavlatou, E.A., Photocatalytic TiO2-Based Nanostructures as a Promising Material for Diverse Environmental Applications: A Review, Reactions 5(1) (2024) 135-194.
DOI: 10.3390/reactions5010007
Google Scholar
[7]
Cheng, L., Xiang, Q., Liao, Y., Zhang, H., CdS-Based photocatalysts, Energy & Environmental Science 11(6) (2018) 1362-1391.
DOI: 10.1039/c7ee03640j
Google Scholar
[8]
Fauzi, A.A., Jalil, A.A., Hassan, N.S., Aziz, F.F.A., Azami, M.S., Hussain, I., Saravanan, R., Vo, D.V.N., A critical review on relationship of CeO2-based photocatalyst towards mechanistic degradation of organic pollutant, Chemosphere 286 (2022) 131651.
DOI: 10.1016/j.chemosphere.2021.131651
Google Scholar
[9]
Lee, G.-J., Wu, J.J., Recent developments in ZnS photocatalysts from synthesis to photocatalytic applications — A review, Powder Technol. 318 (2017) 8-22.
DOI: 10.1016/j.powtec.2017.05.022
Google Scholar
[10]
Sujatha, G., Shanthakumar, S., Chiampo, F., UV Light-Irradiated Photocatalytic Degradation of Coffee Processing Wastewater Using TiO2 as a Catalyst, Environments 7(6) (2020) 47.
DOI: 10.3390/environments7060047
Google Scholar
[11]
Schneider, J., Matsuoka, M., Takeuchi, M., Zhang, J., Horiuchi, Y., Anpo, M., Bahnemann, D.W., Understanding TiO2 Photocatalysis: Mechanisms and Materials, Chem. Rev. 114(19) (2014) 9919-9986.
DOI: 10.1021/cr5001892
Google Scholar
[12]
Khalifa, Z.S., Shaban, M., Ahmed, I.A., Photocatalytic Degradation of Methyl Orange and Methylene Blue Dyes by Engineering the Surface Nano-Textures of TiO(2) Thin Films Deposited at Different Temperatures via MOCVD, Molecules 28(3) (2023).
DOI: 10.3390/molecules28031160
Google Scholar
[13]
Duran, F., Diaz-Uribe, C., Vallejo, W., Muñoz-Acevedo, A., Schott, E., Zarate, X., Adsorption and Photocatalytic Degradation of Methylene Blue on TiO2 Thin Films Impregnated with Anderson-Evans Al-Polyoxometalates: Experimental and DFT Study, ACS Omega 8(30) (2023) 27284-27292.
DOI: 10.1021/acsomega.3c02657
Google Scholar
[14]
Cwalinski, T., Polom, W., Marano, L., Roviello, G., D'Angelo, A., Cwalina, N., Matuszewski, M., Roviello, F., Jaskiewicz, J., Polom, K., Methylene Blue-Current Knowledge, Fluorescent Properties, and Its Future Use, J Clin Med 9(11) (2020).
DOI: 10.3390/jcm9113538
Google Scholar
[15]
Khan, I., Saeed, K., Zekker, I., Zhang, B., Hendi, A.H., Ahmad, A., Ahmad, S., Zada, N., Ahmad, H., Shah, L.A., Shah, T., Khan, I., Review on Methylene Blue: Its Properties, Uses, Toxicity and Photodegradation, Water 14(2) (2022) 242.
DOI: 10.3390/w14020242
Google Scholar
[16]
Shaban, M., Ashraf, A.M., Abukhadra, M.R., TiO2 Nanoribbons/Carbon Nanotubes Composite with Enhanced Photocatalytic Activity; Fabrication, Characterization, and Application, Sci. Rep. 8(1) (2018) 781.
DOI: 10.1038/s41598-018-19172-w
Google Scholar
[17]
Falk, G.S., Borlaf, M., López-Muñoz, M.J., Fariñas, J.C., Rodrigues Neto, J.B., Moreno, R., Microwave-assisted synthesis of TiO2 nanoparticles: photocatalytic activity of powders and thin films, J. Nanopart. Res. 20(2) (2018) 23.
DOI: 10.1007/s11051-018-4140-7
Google Scholar
[18]
Chen, D., Cheng, Y., Zhou, N., Chen, P., Wang, Y., Li, K., Huo, S., Cheng, P., Peng, P., Zhang, R., Wang, L., Liu, H., Liu, Y., Ruan, R., Photocatalytic degradation of organic pollutants using TiO2-based photocatalysts: A review, J. Clean Prod. 268 (2020) 121725.
DOI: 10.1016/j.jclepro.2020.121725
Google Scholar
[19]
Khan, S.A., Arshad, Z., Shahid, S., Arshad, I., Rizwan, K., Sher, M., Fatima, U., Synthesis of TiO2/Graphene oxide nanocomposites for their enhanced photocatalytic activity against methylene blue dye and ciprofloxacin, Compos. Part B-Eng. 175 (2019) 107120.
DOI: 10.1016/j.compositesb.2019.107120
Google Scholar
[20]
Burek, B.O., Bahnemann, D.W., Bloh, J.Z., Modeling and Optimization of the Photocatalytic Reduction of Molecular Oxygen to Hydrogen Peroxide over Titanium Dioxide, ACS Catalysis 9(1) (2019) 25-37.
DOI: 10.1021/acscatal.8b03638
Google Scholar