Synthesis of Activated Carbon/ZnO Nanocomposite Using Melinjo (Gnetum gnemon) Seed Shells for Enhanced Photocatalytic Degradation of Chlorpyrifos Pesticide

Article Preview

Abstract:

Green synthesis of zinc oxide nanoparticles (ZnO NPs) using ethanol extract of avocado fruit (Persea americana) peel with zinc nitrate hexahydrate as ZnO precursor has been conducted. Phytochemicals contained in the ethanol extract of avocado fruit peels such as flavonoids, alkaloids, terpenoids, saponins and phenolics acted as reducing agents, stabilizers and capping agents in green synthesis of ZnO NPs. ZnO NPs further were modified with 1 wt% of activated carbon (AC) derived from melinjo seed shell using hydrothermal method and was evaluated on degradation of chlorpyrifos pesticide. The structural, morphological and optical properties of ZnO NPs, activated carbon and 1 wt % of activated carbon/ZnO (1 wt %-AC/ZnO) nanocomposite were characterized by using the X-Ray Diffraction (XRD) instrument, Scanning Electron Microscopy-Energy-Dispersive X-Ray Spectroscopy (SEM-EDS), Diffuse Reflectance Spectroscopy UV-Vis (DRS UV-Vis) and Brunaeur Emmet Teller (BET). The result showed that the synthesized ZnO NPs were in the zincite crystal phase, while the activated carbon obtained was in amorphous phase. The addition of 1 wt% activated carbon into ZnO NPs caused a decrease in the band gap energy of ZnO NPs. The photocatalytic activity evaluation showed that 1 wt %-AC/ZnO nanocomposite has higher activity than that of bare ZnO NPs. The 1 wt %-AC/ZnO nanocomposite can degrade 90.11% of chlorpyrifos compare with bare ZnO NPs that only degrade 79.30% of chlorpyrifos. The photodegradation evaluation of chlorpyrifos were conducted in the same condition by using 300 mg of 1 wt %-AC/ZnO nanocomposite, the initial pH of chlorpyrifos solution was 7, the initial concentration of chlorpyrifos was 6 mg/L, and the irradiation time under UV light was 4 hours.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

29-40

Citation:

Online since:

February 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Sasi, P.H. Fa. Fasna, T.K. B. Sharmila, C.S. J. Chandra, J. V. Antony, V. Raman, A. B. Nair, H. N. Ramanathan, Green synthesis of ZnO nanoparticles with enhanced photocatalytic and antibacterial activity, J. Alloys. Compd. 924 (2022) 166431.

DOI: 10.1016/j.jallcom.2022.166431

Google Scholar

[2] R. Perveen, S. Shujaat, Z. Qureshi, S. Nawaz, M. I. Khan, M. Iqbal, Green versus sol-gel synthesis of ZnO nanoparticles and antimicrobial activity evaluation against panel of pathogens, J. Mater. Res. Technol. 9(4) (2020) 7817-7827.

DOI: 10.1016/j.jmrt.2020.05.004

Google Scholar

[3] N.B. Mahmood, F.R. Saeed, K.R. Gbashi, U. Mahmood, Synthesis and characterization of zinc oxide nanoparticles via oxalate co-precipitation method, Mater. Lett. X 13 (2022) 100126.

DOI: 10.1016/j.mlblux.2022.100126

Google Scholar

[4] U. T. Nakate, Y. Yu, S. Park, Hydrothermal synthesis of ZnO nanoflakes composed of fine nanoparticles for H2S gas sensing application, Ceram. Int. 48(19)(2022) 28822-28829.

DOI: 10.1016/j.ceramint.2022.03.017

Google Scholar

[5] S. Vasantharaj, S. Sathiyavimal, P. Senthilkumar, V.N. Kalpana, G. Rajalakshmi, M. Alsehli, A. Elfasakhany, A. Pugazhendhi, Enhanced photocatalytic degradation of water pollutants using bio-green synthesis of zinc oxide nanoparticles (ZnO NPs), J. Environ. Chem. Eng. 9 (4) (2021) 105772.

DOI: 10.1016/j.jece.2021.105772

Google Scholar

[6] C.A. Soto-Robles, O. Nava, L. Cornejo, E. Lugo-Medina, A.R. Vilchis-Nestor, A. Castro-Beltrán, P. A. Luque, Biosynthesis, characterization and photocatalytic activity of ZnO nanoparticles using extracts of Justicia spicigera for the degradation of methylene blue, J. Mol. Struct. 1225 (2022) 129101.

DOI: 10.1016/j.molstruc.2020.129101

Google Scholar

[7] S. Rajendracharia, P. Taslimi, A. C. Karaoglanli, O. Uzun, E. Alp, G. K. Jayaprakash, Photocatalytic degradation of Rhodamine B (RhB) dye in waste water and enzymatic inhibition study using cauliflower shaped ZnO nanoparticles synthesized by a novel one-pot green synthesis method, Arab. J. Chem. 14(6) (2021) 103180.

DOI: 10.1016/j.arabjc.2021.103180

Google Scholar

[8] Y. Huang Y, C. Y. Haw, Z. Zheng, J. Kang, J. C. Zheng, H. Wang, Biosynthesis of zinc oxide nanomaterials from plant extracts and future green prospects: A Topical review, Adv. Sustain. Syst. 5 (6) (2021) 2000266.

DOI: 10.1002/adsu.202000266

Google Scholar

[9] P. Muthirulan, M. Meenakshisundararam, N. Kannan, Beneficial role of ZnO photocatalyst supported with porous activated carbon for the mineralization of alizarin cyanin green dye in aqueous solution, J. Advan. Res. 4 (2013) 479–484.

DOI: 10.1016/j.jare.2012.08.005

Google Scholar

[10] W. Raza, S. M. Faisal, M. Owais, D. Bahnemann, M. Muneer, Facile fabrication of highly efficient modified ZnO photocatalyst with enhanced photocatalytic, antibacterial and anticancer activity, RSC Adv, 6(2016) 78335-78350.

DOI: 10.1039/c6ra06774c

Google Scholar

[11] S. S. Mydeen, R. R. Kumar, S. Sambathkumar, M. Kottaisamy, V. S. Vasantha, Facile synthesis of ZnO/AC nanocomposites using Prosopis Juliflora for enhanced photocatalytic degradation of methylene blue and antibacterial activity, Optik 224 (2020) 165426.

DOI: 10.1016/j.ijleo.2020.165426

Google Scholar

[12] A. Machrouhi, H. Khiar, A. Elhalil, M. Sadiq, M. Abdennouri, N. Barka, Synthesis, characterization, and photocatalytic degradation of anionic dyes using a novel ZnO/activated carbon composite, WEE 5 (2023) 80–87.

DOI: 10.1016/j.wsee.2022.12.001

Google Scholar

[13] Y. Chang, C. Hsu, Synergetic effect of carbon black as co-catalyst for enhanced visible-light photocatalytic activity and stability on ZnO nanoparticles, Solid State Sci. 107 (2020) 106366.

DOI: 10.1016/j.solidstatesciences.2020.106366

Google Scholar

[14] Y. He, Y. Wang, J. Hu, K. Wang, Y. Zhai, Y. Chen, Y. Duan, Y. Wang, W. Zhang, Photocatalytic property correlated with microstructural evolution of the biochar/ZnO composites, J. Mater. Res. Technol. 11 (2021) 1308-1321.

DOI: 10.1016/j.jmrt.2021.01.077

Google Scholar

[15] V. Kumari, A. Mittal, J. Jindal, S. Yadav, N. Kumar, S-,N- and C-doped ZnO as semiconductor photocatalysts: A review. Front. Mater. Sci. 13 (2019) 1– 22.

DOI: 10.1007/s11706-019-0453-4

Google Scholar

[16] G. Wulandari, A. R. Asep & R. Rani, Uji aktivitas bakteri ekstrak etanol kulit buah alpukat (Persea americana Mill) terhadap Staphylococcus aureus ATCC. Media Informasi, 15(2019) 74.

DOI: 10.37160/bmi.v15i1.229

Google Scholar

[17] Dwijayanti, S. Kartika, Slamet, Yuliusman, Characterization of activated carbon from melinjo (Gnetum gnemon) shells with chemical-physical activation, Advances in Social Science, Education and Humanities Research, 410 (2020).

DOI: 10.2991/assehr.k.200303.014

Google Scholar

[18] S. Sobhanian, A. Ahmadi, B. Nahri-Niknafs, Photodegradation of insecticide chlorpyrifos in aqueous solution under simulated solar light irradiation conditions using Babolrood river water, J. Appl. Chem. Res. 14(4) (2021) 62-68.

Google Scholar

[19] A.A. Shorgoli, M. Shokri, Photocatalytic degradation of imidacloprid pesticide in aqueous solution by TiO2 nanoparticles immobilized on the glass plate. Chem. Eng. Commun. 204 (2017) 1061-1069.

DOI: 10.1080/00986445.2017.1337005

Google Scholar

[20] A.T. Le, S.Y. Pung, Reusability of metals/metal oxide coupled zinc oxide nanorods in degradation of rhodamine B dye, Pigment. Resin Technol. 50 (2020) 9 Pages.

DOI: 10.1108/prt-01-2020-0001

Google Scholar

[21] A. E. Adebayo, A. M. Oke, A. Lateef, A. A. Oyatokun, O. D. Abisoye, I. P. Adiji, D. O. Fagbenro, T. V. Amusan, J. A. Badmus, T. B. Asafa, L. S. Beukes, E. B. Gueguim-Kana, S. H. Abbas, Biosynthesis of silver, gold and silver–gold alloy nanoparticles using Persea americana fruit peel aqueous extract for their medical properties, Nanotecnol. Environ. Eng. 4(13) (2019) 15 pages.

DOI: 10.1007/s41204-019-0060-8

Google Scholar

[22] E. Iqbal, K. Abu Salim, L.B.L. Lim, Phytochemical screening, total phenolics and antioxidant activities of bark and leaf extracts of Goniothalamus velutinus (Airy Shaw) from Brunei Darussalam, J. King Saud Univ. Sci. 27 (2015) 224–232.

DOI: 10.1016/j.jksus.2015.02.003

Google Scholar

[23] A. Joshi, M. Bhobe, A. Saatarkar, Phytochemical investigation of the roots of Grewia microcos Linn. J. Chem. Pharm. Res. 5 (2013) 80– 87.

Google Scholar

[24] A. Banso, S. Adeyemo, Phytochemical screening and antimalarial assessment of Abutilon mauritianum, Bacopa monnifera and Datura stramonium. Biokemistri 18 (2006) 39–44.

DOI: 10.4314/biokem.v18i1.56390

Google Scholar

[25] Indriaty, Djufri, B. Ginting, K. Hasballah, Phytochemical screening, phenolic and flavonoid content, and antioxidant activity of Rhizophoraceae methanol extractfrom Langsa, Aceh, Indonesia, Biodiversitas, 24(5) (2023) 2865-2876.

DOI: 10.13057/biodiv/d240541

Google Scholar

[26] D.A. Bopape, E.M David, C. H. Nomso, Green synthesis of ZnO: Effect of plant concentration on the morphology, optical properties and photodegradation of dyes and antibiotics in wastewater. Optik, 251 (2022) 168459.

DOI: 10.1016/j.ijleo.2021.168459

Google Scholar

[27] S. Lubis, M. Ramli, Y. Ermanda, Hydrothermal synthesis of activated carbon/α-Fe2O3 nanocomposite and its application for removing tartrazine dye. IOP Conf. Ser. Mater. Sci. eng. 796 (2020) 012061.

DOI: 10.1088/1757-899x/796/1/012061

Google Scholar

[28] A.A. Barzinjy, H.H. Azeez, Green synthesis and characterization of zinc oxide nanoparticles using Eucalyptus globulus Labill. leaf extract and zinc nitrate hexahydrate salt. SN Appl. Sci. 2 (2020) 991.

DOI: 10.1007/s42452-020-2813-1

Google Scholar

[29] S. T. Karam, A. F. Abdulrahman, Green synthesis and characterization of ZnO nanoparticles by using Thyme plant leaf extract, Photonics, 9(8) (2022) 594.

DOI: 10.3390/photonics9080594

Google Scholar

[30] Z. Mashwani, T. Khan, M.A. Khan, A. Nadhman, Synthesis in plants and plant extracts of silver nanoparticles with potent antimicrobial properties: current status and future prospects, Appl. Microbiol. Biotechnol. 99(23) (2015) 9923-34.

DOI: 10.1007/s00253-015-6987-1

Google Scholar

[31] R. Shashanka, H. Esgin, V. M. Yilmaz, Y. Caglar, Fabrication and characterization of green synthesized ZnO nanoparticle based dye-sensitized solar cell, J. Sci-Adv.Mater. Dev. 5 (2020) 185- 191.

DOI: 10.1016/j.jsamd.2020.04.005

Google Scholar

[32] M. Ding, X. Liu, J. Yao, Zinc oxide rod/peanut shell-derived porous carbon composites for cooperative CO2 chemical fixation, New J. Chem. 45 (2021) 4147-4151.

DOI: 10.1039/d1nj00179e

Google Scholar

[33] S. Ma, J. Xue, Y. Zhou, Z. Zhang, X. Wu, A facile route for the preparation of ZnO/C composites with high photocatalytic activity and adsorption capacity, Cryst.Eng.Comm. 16 (2014) 4478–4484.

DOI: 10.1039/c4ce00110a

Google Scholar

[34] P. Shresta, M.K. Jha, J. Ghimire, A. R. Koirala, R. M. Shresta, R. K. Sharma, B. Pant, M. Park, H. R. Pant, Decoration of zinc oxide nanorods into the surface of activated carbon obtained from agricultural waste for effective removal of methylene blue dye, Materials. 13 (2020) 5667.

DOI: 10.3390/ma13245667

Google Scholar

[35] S. Rajendrachari, P. Taslimi, A.C. Karaoglanli, O. Uzun, E. Alp, G.K. Jayaprakash, Photocatalytic degradation of Rhodamine B (RhB) dye in waste water and enzymatic inhibition study using cauliflower shaped ZnO nanoparticles synthesized by a novel one-pot green synthesis method, Arab. J. Chem. 14 (6) (2021) 103180.

DOI: 10.1016/j.arabjc.2021.103180

Google Scholar

[36] H. Cai, D. Zhang, X. Ma, Z. Ma, A novel ZnO/biochar composite catalysts for visible light degradation of metronidazole, Sep. Purif. Technol. 288 (2022) 120633

DOI: 10.1016/j.seppur.2022.120633

Google Scholar

[37] C. Vidya, S. Hiremath, M.N. Chandraprabha, M.L. Antonyraj, I. V. Gopal, A. Jain, K. Bansal, Green synthesis of ZnO nanoparticles by Calotropis gigantea, Int. J. Curr. Eng. Technol. 1 (2013) 118–120.

Google Scholar

[38] P. Jamdagni, K. Poonam, J. S. Rana, Green synthesis of zinc oxide nanoparticles using flower extract of Nyctanthes arbor-tristis and their antifungal activity, J. King Saud Univ. Sci. 30(2) (2018) 168-175.

DOI: 10.1016/j.jksus.2016.10.002

Google Scholar

[39] J. Xue, S. Ma, Y. Zhou, Z. Zhang, Facile synthesis of ZnO–C nanocomposites with enhanced photocatalytic activity, New J. Chem. 39 (2015) 1852-1857.

DOI: 10.1039/c4nj02004a

Google Scholar

[40] Y. He, Y. Wang, J. Hu, K. Wang, Y. Zhai, Y. Chen, Y. Duan, Y. Wang, W. Zhang, Photocatalytic property correlated with microstructural evolution of the biochar/ZnO composites, (2021). J. Mater. Res. Technol. 11 (2021)1308–1321.

DOI: 10.1016/j.jmrt.2021.01.077

Google Scholar

[41] P. Kadam, K. Gadave, S. Jadkar, V. Kadam, C. Jagtap, C: ZnO composites for improving catalytic activity of ZnO, ES Energy Environ. 21 (2023) 946.

Google Scholar

[42] V. H. Tran Thi, B. K. Lee, Great improvement on tetracycline removal using ZnO rod-activated carbon fiber composite prepared with a facile microwave method, J. Hazard. Mater. 324 (2017) 329-339.

DOI: 10.1016/j.jhazmat.2016.10.066

Google Scholar

[43] D.A. Oluwasogo, S. Varangane. Y. Taraka Prabhu, B.M. Abraham, V. Perupogu, U. Pal, Biosynthetic modulation of carbon-doped ZnO for rapid photocatalytic endocrine disruptive remediation and hydrogen evolution, J. Clean. Prod. 394 (2023) 136393.

DOI: 10.1016/j.jclepro.2023.136393

Google Scholar

[44] B. Hakimi, M. Ghorbanpour, A. Feizi, A Comparative study of photocatalytic activity of ZnO/activated carbon nanocomposites prepared by solid-state an conventional precipitation methods, J. Nanostruct. 8(3) (2018) 259-265.

Google Scholar