[1]
S. Sasi, P.H. Fa. Fasna, T.K. B. Sharmila, C.S. J. Chandra, J. V. Antony, V. Raman, A. B. Nair, H. N. Ramanathan, Green synthesis of ZnO nanoparticles with enhanced photocatalytic and antibacterial activity, J. Alloys. Compd. 924 (2022) 166431.
DOI: 10.1016/j.jallcom.2022.166431
Google Scholar
[2]
R. Perveen, S. Shujaat, Z. Qureshi, S. Nawaz, M. I. Khan, M. Iqbal, Green versus sol-gel synthesis of ZnO nanoparticles and antimicrobial activity evaluation against panel of pathogens, J. Mater. Res. Technol. 9(4) (2020) 7817-7827.
DOI: 10.1016/j.jmrt.2020.05.004
Google Scholar
[3]
N.B. Mahmood, F.R. Saeed, K.R. Gbashi, U. Mahmood, Synthesis and characterization of zinc oxide nanoparticles via oxalate co-precipitation method, Mater. Lett. X 13 (2022) 100126.
DOI: 10.1016/j.mlblux.2022.100126
Google Scholar
[4]
U. T. Nakate, Y. Yu, S. Park, Hydrothermal synthesis of ZnO nanoflakes composed of fine nanoparticles for H2S gas sensing application, Ceram. Int. 48(19)(2022) 28822-28829.
DOI: 10.1016/j.ceramint.2022.03.017
Google Scholar
[5]
S. Vasantharaj, S. Sathiyavimal, P. Senthilkumar, V.N. Kalpana, G. Rajalakshmi, M. Alsehli, A. Elfasakhany, A. Pugazhendhi, Enhanced photocatalytic degradation of water pollutants using bio-green synthesis of zinc oxide nanoparticles (ZnO NPs), J. Environ. Chem. Eng. 9 (4) (2021) 105772.
DOI: 10.1016/j.jece.2021.105772
Google Scholar
[6]
C.A. Soto-Robles, O. Nava, L. Cornejo, E. Lugo-Medina, A.R. Vilchis-Nestor, A. Castro-Beltrán, P. A. Luque, Biosynthesis, characterization and photocatalytic activity of ZnO nanoparticles using extracts of Justicia spicigera for the degradation of methylene blue, J. Mol. Struct. 1225 (2022) 129101.
DOI: 10.1016/j.molstruc.2020.129101
Google Scholar
[7]
S. Rajendracharia, P. Taslimi, A. C. Karaoglanli, O. Uzun, E. Alp, G. K. Jayaprakash, Photocatalytic degradation of Rhodamine B (RhB) dye in waste water and enzymatic inhibition study using cauliflower shaped ZnO nanoparticles synthesized by a novel one-pot green synthesis method, Arab. J. Chem. 14(6) (2021) 103180.
DOI: 10.1016/j.arabjc.2021.103180
Google Scholar
[8]
Y. Huang Y, C. Y. Haw, Z. Zheng, J. Kang, J. C. Zheng, H. Wang, Biosynthesis of zinc oxide nanomaterials from plant extracts and future green prospects: A Topical review, Adv. Sustain. Syst. 5 (6) (2021) 2000266.
DOI: 10.1002/adsu.202000266
Google Scholar
[9]
P. Muthirulan, M. Meenakshisundararam, N. Kannan, Beneficial role of ZnO photocatalyst supported with porous activated carbon for the mineralization of alizarin cyanin green dye in aqueous solution, J. Advan. Res. 4 (2013) 479–484.
DOI: 10.1016/j.jare.2012.08.005
Google Scholar
[10]
W. Raza, S. M. Faisal, M. Owais, D. Bahnemann, M. Muneer, Facile fabrication of highly efficient modified ZnO photocatalyst with enhanced photocatalytic, antibacterial and anticancer activity, RSC Adv, 6(2016) 78335-78350.
DOI: 10.1039/c6ra06774c
Google Scholar
[11]
S. S. Mydeen, R. R. Kumar, S. Sambathkumar, M. Kottaisamy, V. S. Vasantha, Facile synthesis of ZnO/AC nanocomposites using Prosopis Juliflora for enhanced photocatalytic degradation of methylene blue and antibacterial activity, Optik 224 (2020) 165426.
DOI: 10.1016/j.ijleo.2020.165426
Google Scholar
[12]
A. Machrouhi, H. Khiar, A. Elhalil, M. Sadiq, M. Abdennouri, N. Barka, Synthesis, characterization, and photocatalytic degradation of anionic dyes using a novel ZnO/activated carbon composite, WEE 5 (2023) 80–87.
DOI: 10.1016/j.wsee.2022.12.001
Google Scholar
[13]
Y. Chang, C. Hsu, Synergetic effect of carbon black as co-catalyst for enhanced visible-light photocatalytic activity and stability on ZnO nanoparticles, Solid State Sci. 107 (2020) 106366.
DOI: 10.1016/j.solidstatesciences.2020.106366
Google Scholar
[14]
Y. He, Y. Wang, J. Hu, K. Wang, Y. Zhai, Y. Chen, Y. Duan, Y. Wang, W. Zhang, Photocatalytic property correlated with microstructural evolution of the biochar/ZnO composites, J. Mater. Res. Technol. 11 (2021) 1308-1321.
DOI: 10.1016/j.jmrt.2021.01.077
Google Scholar
[15]
V. Kumari, A. Mittal, J. Jindal, S. Yadav, N. Kumar, S-,N- and C-doped ZnO as semiconductor photocatalysts: A review. Front. Mater. Sci. 13 (2019) 1– 22.
DOI: 10.1007/s11706-019-0453-4
Google Scholar
[16]
G. Wulandari, A. R. Asep & R. Rani, Uji aktivitas bakteri ekstrak etanol kulit buah alpukat (Persea americana Mill) terhadap Staphylococcus aureus ATCC. Media Informasi, 15(2019) 74.
DOI: 10.37160/bmi.v15i1.229
Google Scholar
[17]
Dwijayanti, S. Kartika, Slamet, Yuliusman, Characterization of activated carbon from melinjo (Gnetum gnemon) shells with chemical-physical activation, Advances in Social Science, Education and Humanities Research, 410 (2020).
DOI: 10.2991/assehr.k.200303.014
Google Scholar
[18]
S. Sobhanian, A. Ahmadi, B. Nahri-Niknafs, Photodegradation of insecticide chlorpyrifos in aqueous solution under simulated solar light irradiation conditions using Babolrood river water, J. Appl. Chem. Res. 14(4) (2021) 62-68.
Google Scholar
[19]
A.A. Shorgoli, M. Shokri, Photocatalytic degradation of imidacloprid pesticide in aqueous solution by TiO2 nanoparticles immobilized on the glass plate. Chem. Eng. Commun. 204 (2017) 1061-1069.
DOI: 10.1080/00986445.2017.1337005
Google Scholar
[20]
A.T. Le, S.Y. Pung, Reusability of metals/metal oxide coupled zinc oxide nanorods in degradation of rhodamine B dye, Pigment. Resin Technol. 50 (2020) 9 Pages.
DOI: 10.1108/prt-01-2020-0001
Google Scholar
[21]
A. E. Adebayo, A. M. Oke, A. Lateef, A. A. Oyatokun, O. D. Abisoye, I. P. Adiji, D. O. Fagbenro, T. V. Amusan, J. A. Badmus, T. B. Asafa, L. S. Beukes, E. B. Gueguim-Kana, S. H. Abbas, Biosynthesis of silver, gold and silver–gold alloy nanoparticles using Persea americana fruit peel aqueous extract for their medical properties, Nanotecnol. Environ. Eng. 4(13) (2019) 15 pages.
DOI: 10.1007/s41204-019-0060-8
Google Scholar
[22]
E. Iqbal, K. Abu Salim, L.B.L. Lim, Phytochemical screening, total phenolics and antioxidant activities of bark and leaf extracts of Goniothalamus velutinus (Airy Shaw) from Brunei Darussalam, J. King Saud Univ. Sci. 27 (2015) 224–232.
DOI: 10.1016/j.jksus.2015.02.003
Google Scholar
[23]
A. Joshi, M. Bhobe, A. Saatarkar, Phytochemical investigation of the roots of Grewia microcos Linn. J. Chem. Pharm. Res. 5 (2013) 80– 87.
Google Scholar
[24]
A. Banso, S. Adeyemo, Phytochemical screening and antimalarial assessment of Abutilon mauritianum, Bacopa monnifera and Datura stramonium. Biokemistri 18 (2006) 39–44.
DOI: 10.4314/biokem.v18i1.56390
Google Scholar
[25]
Indriaty, Djufri, B. Ginting, K. Hasballah, Phytochemical screening, phenolic and flavonoid content, and antioxidant activity of Rhizophoraceae methanol extractfrom Langsa, Aceh, Indonesia, Biodiversitas, 24(5) (2023) 2865-2876.
DOI: 10.13057/biodiv/d240541
Google Scholar
[26]
D.A. Bopape, E.M David, C. H. Nomso, Green synthesis of ZnO: Effect of plant concentration on the morphology, optical properties and photodegradation of dyes and antibiotics in wastewater. Optik, 251 (2022) 168459.
DOI: 10.1016/j.ijleo.2021.168459
Google Scholar
[27]
S. Lubis, M. Ramli, Y. Ermanda, Hydrothermal synthesis of activated carbon/α-Fe2O3 nanocomposite and its application for removing tartrazine dye. IOP Conf. Ser. Mater. Sci. eng. 796 (2020) 012061.
DOI: 10.1088/1757-899x/796/1/012061
Google Scholar
[28]
A.A. Barzinjy, H.H. Azeez, Green synthesis and characterization of zinc oxide nanoparticles using Eucalyptus globulus Labill. leaf extract and zinc nitrate hexahydrate salt. SN Appl. Sci. 2 (2020) 991.
DOI: 10.1007/s42452-020-2813-1
Google Scholar
[29]
S. T. Karam, A. F. Abdulrahman, Green synthesis and characterization of ZnO nanoparticles by using Thyme plant leaf extract, Photonics, 9(8) (2022) 594.
DOI: 10.3390/photonics9080594
Google Scholar
[30]
Z. Mashwani, T. Khan, M.A. Khan, A. Nadhman, Synthesis in plants and plant extracts of silver nanoparticles with potent antimicrobial properties: current status and future prospects, Appl. Microbiol. Biotechnol. 99(23) (2015) 9923-34.
DOI: 10.1007/s00253-015-6987-1
Google Scholar
[31]
R. Shashanka, H. Esgin, V. M. Yilmaz, Y. Caglar, Fabrication and characterization of green synthesized ZnO nanoparticle based dye-sensitized solar cell, J. Sci-Adv.Mater. Dev. 5 (2020) 185- 191.
DOI: 10.1016/j.jsamd.2020.04.005
Google Scholar
[32]
M. Ding, X. Liu, J. Yao, Zinc oxide rod/peanut shell-derived porous carbon composites for cooperative CO2 chemical fixation, New J. Chem. 45 (2021) 4147-4151.
DOI: 10.1039/d1nj00179e
Google Scholar
[33]
S. Ma, J. Xue, Y. Zhou, Z. Zhang, X. Wu, A facile route for the preparation of ZnO/C composites with high photocatalytic activity and adsorption capacity, Cryst.Eng.Comm. 16 (2014) 4478–4484.
DOI: 10.1039/c4ce00110a
Google Scholar
[34]
P. Shresta, M.K. Jha, J. Ghimire, A. R. Koirala, R. M. Shresta, R. K. Sharma, B. Pant, M. Park, H. R. Pant, Decoration of zinc oxide nanorods into the surface of activated carbon obtained from agricultural waste for effective removal of methylene blue dye, Materials. 13 (2020) 5667.
DOI: 10.3390/ma13245667
Google Scholar
[35]
S. Rajendrachari, P. Taslimi, A.C. Karaoglanli, O. Uzun, E. Alp, G.K. Jayaprakash, Photocatalytic degradation of Rhodamine B (RhB) dye in waste water and enzymatic inhibition study using cauliflower shaped ZnO nanoparticles synthesized by a novel one-pot green synthesis method, Arab. J. Chem. 14 (6) (2021) 103180.
DOI: 10.1016/j.arabjc.2021.103180
Google Scholar
[36]
H. Cai, D. Zhang, X. Ma, Z. Ma, A novel ZnO/biochar composite catalysts for visible light degradation of metronidazole, Sep. Purif. Technol. 288 (2022) 120633
DOI: 10.1016/j.seppur.2022.120633
Google Scholar
[37]
C. Vidya, S. Hiremath, M.N. Chandraprabha, M.L. Antonyraj, I. V. Gopal, A. Jain, K. Bansal, Green synthesis of ZnO nanoparticles by Calotropis gigantea, Int. J. Curr. Eng. Technol. 1 (2013) 118–120.
Google Scholar
[38]
P. Jamdagni, K. Poonam, J. S. Rana, Green synthesis of zinc oxide nanoparticles using flower extract of Nyctanthes arbor-tristis and their antifungal activity, J. King Saud Univ. Sci. 30(2) (2018) 168-175.
DOI: 10.1016/j.jksus.2016.10.002
Google Scholar
[39]
J. Xue, S. Ma, Y. Zhou, Z. Zhang, Facile synthesis of ZnO–C nanocomposites with enhanced photocatalytic activity, New J. Chem. 39 (2015) 1852-1857.
DOI: 10.1039/c4nj02004a
Google Scholar
[40]
Y. He, Y. Wang, J. Hu, K. Wang, Y. Zhai, Y. Chen, Y. Duan, Y. Wang, W. Zhang, Photocatalytic property correlated with microstructural evolution of the biochar/ZnO composites, (2021). J. Mater. Res. Technol. 11 (2021)1308–1321.
DOI: 10.1016/j.jmrt.2021.01.077
Google Scholar
[41]
P. Kadam, K. Gadave, S. Jadkar, V. Kadam, C. Jagtap, C: ZnO composites for improving catalytic activity of ZnO, ES Energy Environ. 21 (2023) 946.
Google Scholar
[42]
V. H. Tran Thi, B. K. Lee, Great improvement on tetracycline removal using ZnO rod-activated carbon fiber composite prepared with a facile microwave method, J. Hazard. Mater. 324 (2017) 329-339.
DOI: 10.1016/j.jhazmat.2016.10.066
Google Scholar
[43]
D.A. Oluwasogo, S. Varangane. Y. Taraka Prabhu, B.M. Abraham, V. Perupogu, U. Pal, Biosynthetic modulation of carbon-doped ZnO for rapid photocatalytic endocrine disruptive remediation and hydrogen evolution, J. Clean. Prod. 394 (2023) 136393.
DOI: 10.1016/j.jclepro.2023.136393
Google Scholar
[44]
B. Hakimi, M. Ghorbanpour, A. Feizi, A Comparative study of photocatalytic activity of ZnO/activated carbon nanocomposites prepared by solid-state an conventional precipitation methods, J. Nanostruct. 8(3) (2018) 259-265.
Google Scholar