Green Synthesis of TiO2 and its Modification with Activated Carbon from Nutmeg Shell for Photodegradation of Chlorpyrifos Pesticide

Article Preview

Abstract:

The green synthesis of TiO2 nanoparticles (TiO2 NPs) and their modification with activated carbon (AC) derived from nutmeg (Myristica fragrans) seed shell as photocatalyst for photodegradation of chlorpyrifos pesticide has been successfully conducted. TiO2 NPs were synthesized using orange peel extract that play a pivotal role as bioreductor, stabilizers and capping agent in synthesis of TiO2 NPs with titanium tetraisopropoxide as a precursor. The carbonized nutmeg shell was activated using NaOH solution and the activated carbon/TiO2 (AC/TiO2) nanocomposite was prepared by hydrothermal method. The crystallinity, average crystallite size, and anatase structure of TiO2 are established by X-ray diffraction (XRD), while the morphology and optical property of synthesized materials was analysis by using Scanning Electron Microscopy (SEM), Fourier Transform Infrared (FTIR) spectroscopy and UV-vis diffuse reflectance spectroscopy (UV-Vis DRS). The average crystallite size of 7.5 wt%-AC/TiO2 nanocomposite was a little bigger than that of TiO2 NPs. Photodegradation of chlorpyrifos was selected as a model reaction to evaluate the photocatalytic activity of 7.5 wt%-AC/TiO2 nanocomposite. The results showed that 7.5%-AC/TiO2 nanocomposite can degrade the chlorpyrifos solution up to 81% after irradiated under UV light for 6 hours at the initial mass of photocatalyst was 250 mg and initial chlorpyrifos concentration was 6 ppm. The photocatalytic activity of 7.5%-AC/TiO2 nanocomposite was higher than that of bare TiO2 NPs.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

19-28

Citation:

Online since:

February 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Maletic, M. Vukcevic, A. Kalijadis, I. Jankovic-Castvan, A. Dapcevic, Z. Lausevic, M. Lausevic, Hydrothermal synthesis of TiO2/carbon composites and their application for removal of organic pollutants, Arab. J. Chem. 12 (2019) 4388–439.

Google Scholar

[2] A. Oluwole, E. O. Omotalo, O. S. Olatunji, Pharmaceuticals and personal care products in water and wastewater: a review of treatment processes and use of photocatalyst immobilized on functionalized carbon in AOP degradation, BMC Chem. 14 (2020) 29 pages.

DOI: 10.1186/s13065-020-00714-1

Google Scholar

[3] A. Sudhaik, P. Raizada, P.Shandilya, D. Y. Jeong, J.H. Lim, P. Singh, Review on fabrication of graphitic carbon nitride based efficient nanocomposites for photodegradation of aqueous phase organic pollutants, J. Ind. Eng. Chem. 67 (2018) 28–51.

DOI: 10.1016/j.jiec.2018.07.007

Google Scholar

[4] S. Sharma, V. Dutta, V. P. Singh, P. Raizada, A. Rahmani-Sani, V.K. Thakur, Carbon quantum dot supported semiconductor photocatalysts for efficient degradation of organic pollutants in water: a review, J. Clean. Prod. 228 (2019) 755-769.

DOI: 10.1016/j.jclepro.2019.04.292

Google Scholar

[5] V. Hasija, P. Raizada, A. Sudhaik, K. Sharma, A. Kumar, P. Singh, S.B. Jonnalagadda, V.K. Thakur, Recent advances in noble metal free doped graphitic carbon nitride based nanohybrids for photocatalysis of organic contaminants in water: a review, Appl. Mater. Today 15 (2019) 494–524.

DOI: 10.1016/j.apmt.2019.04.003

Google Scholar

[6] J. Matos, S. Miralles-Cuevas, A. Ruíz-Delgado, I. Oller, S. Malato, Development of TiO2-C photocatalysts for solar treatment of polluted water, Carbon 122 (2017) 361–373.

DOI: 10.1016/j.carbon.2017.06.091

Google Scholar

[7] X. Tang, Z. Wang, Y. Wang, Visible active N-doped TiO2/reduced graphene oxide for the degradation of tetracycline hydrochloride, Chem. Phys. Lett. 691 (2018) 408–414.

DOI: 10.1016/j.cplett.2017.11.037

Google Scholar

[8] C. Thambiliyagodage, Efficient photocatalysis of carbon coupled TiO2 to degrade pollutants in wastewater – a review, Environ. Nanotechnol. Monit. Manag. 100737 (2022).

DOI: 10.1016/j.enmm.2022.100737

Google Scholar

[9] B. Xing, C. Shi, C. Zhang, G. Yi, L. Chen, H. Guo, G. Huang, J. Cao, Preparation of TiO2/activated carbon composites forphotocatalytic degradation of RhB under UV light irradiation, J. Nanomater. (2016) 8393648.

DOI: 10.1155/2016/8393648

Google Scholar

[10] E. M. El Mouchtari, D. Claude, S. Rafqah, F. Najjar, H. Anane, A. Piram, A. Hamadeh, S. Briche, P. Wong-Wah-Chung, TiO2 and activated carbon of argania spinosa tree nutshells composites for the adsorption photocatalysis removal of pharmaceuticals from aqueous solution, J. Photochem. Photobiol. A: Chem. 112183 (2020).

DOI: 10.1016/j.jphotochem.2019.112183

Google Scholar

[11] A. Amorós-Pérez, M. A. Lillo-Ródenas, M.D.C. Román-Martínez, P. García-Muñoz, N. Keller, TiO2 and TiO2-carbon hybrid photocatalysts for diuron removal, Catalysts, 11 (2021) 457.

DOI: 10.3390/catal11040457

Google Scholar

[12] M. Mariana , E. M. Mistar, T. Alfatah, M. D. Supardan, High-porous activated carbon derived from Myristica fragrans shell using one-step KOH activation for methylene blue adsorption, Bioresour. Technol. 16(2021) 100845.

DOI: 10.1016/j.biteb.2021.100845

Google Scholar

[13] Nurjannah, R. Yulianti, A. Marzuki, S. Kasim and N. J. N. Djide, Analisis residu pestisida klorpirifos pada beras (oryza sativa) yang berasal Kecamatan Baebunta Kabupaten Luwu Utara, Majalah Farmasi dan Farmakologi, 23(3) (2019) 109-111.

DOI: 10.20956/mff.v23i3.9402

Google Scholar

[14] Fahmi, Analisis residu pestisida pada beras tangse kabupaten pidie menggunakan metode kromatografi gas – Electron Capture Detector (ECD), Skripsi, UIN Ar-raniry, Banda Aceh, 2021.

Google Scholar

[15] A. Saiya, D, Gumolung, D.H.O, Howan, Analisis residu klorpirifos dalam sayuran kubis dengan metode HPLC di beberapa pasar tradisional di Sulawesi Utara, Eksakta, 18(2) (2017) 77-85.

DOI: 10.24036/eksakta/vol18-iss02/57

Google Scholar

[16] Damaiyanti, R. Yulianty, A. Marzuki, S. Kasim, H. Rante, Analisis residu pestisida klorpirifos pada cabai (capsicum sp.) dari Desa Bungin Kecamatan Bungin Kabupaten EnrekangMajalah Farmasi dan Farmakologi, 23(3) (2019) 106-108.

DOI: 10.20956/mff.v23i3.9401

Google Scholar

[17] F.J. Benitez, F.J. Real, J.L. Acero, C. Garcia, Photochemical oxidation pprocesses for the elimination of phenyl-urea herbicides in waters, J. Hazard. Mater., 138(2) (2006) 278–287.

DOI: 10.1016/j.jhazmat.2006.05.077

Google Scholar

[18] A. Kurnia, Analisis residu klorpirifos pada tanah dan validasinya, Jurnal Agrikultura, 29(2) (2018) 61–65.

DOI: 10.24198/agrikultura.v29i2.19247

Google Scholar

[19] S. Farahbakhsh, R. Parvari, A. Zare, H. Mahdizadeh, V. Faizi V, A. Saljooqi, Preparation of biochar based on grapefruit peel and magnetite decorated with cadmium sulfide nanoparticles for photocatalytic degradation of chlorpyrifos, Diam. Relat. Mater. 126 (2022) 109130.

DOI: 10.1016/j.diamond.2022.109130

Google Scholar

[20] S. Dubale, D. Kebebe, A. Zeynudin, N. Abdissa, S. Suleman, Phytochemical screening and antimicrobial activity evaluation of selected medicinal plants in Ethiopia, J. Exp. Pharmacol. 15(2023) 51–62.

DOI: 10.2147/jep.s379805

Google Scholar

[21] A. M. Amanulla, R. Sundaram, Green synthesis of TiO2 nanoparticles using orange peel extract for antibacterial, cytotoxicity and humidity sensor applications, Mater. Today: Proc. 8 (2019) 323-331.

DOI: 10.1016/j.matpr.2019.02.118

Google Scholar

[22] G. Kandregula, A. Chinthakuntia, K. V. Rao, S. Chidurala, Synthesis of TiO2 nanoparticles from orange fruit waste, Int. J. Adv. Multidiscip. 2(1) (2015) 82-90.

Google Scholar

[23] M. Nadeem, D. Tungmunnithum, C. Hano, B. H. Abbasi, S. S. Hashmi, W. Ahmad, A. Zahir, The current trends in the green synthesis of titanium oxide nanoparticles and their applications, Green Chem. Lett. Rev. 11(2018) 492-502.

DOI: 10.1080/17518253.2018.1538430

Google Scholar

[24] M. Srinivasan, M., Venkatesan, V. Arumugam, G. Natesan, N. Saravanan, N., S. Murugesan, S. Ramachandran, R. Ayyasamy, A. Pugazhendhi, Green synthesis and characterization of titanium dioxide nanoparticles (TiO2 NPs) using Sesbania grandiflora and evaluation of toxicity in zebrafish embryos, Process Biochem. 80 (2019) 197-202.

DOI: 10.1016/j.procbio.2019.02.010

Google Scholar

[25] B. Mondol, A. Sarker, A.M. Shareque, S.C. Dey, M. T. Islam, A. K. Das, S. M. Shamsuddin, M.A.I. Molla, M. Sarker, Preparation of activated carbon/TiO2 nanohybrids for photodegradation of reactive red-35 dye using sunlight, Photochem 1 (2021) 54-66.

DOI: 10.3390/photochem1010006

Google Scholar

[26] D. Huang, Y. Miyamoto, T. Matsumoto T. Tojo, T. Fan, J. Ding, Q. Guo, D. Zhang, Preparation and characterization of high-surface-area TiO2/activated carbon by low-temperature impregnation Sep. Purif. Technol. 78(1) (2011) 9–15.

DOI: 10.1016/j.seppur.2011.01.010

Google Scholar

[27] M. Baca, K. Wenelska, E. Mijowska, J. R. Kalenzuk, B. Zielinska, Physicochemical and photocatalytic characterization of mesoporous carbon/titanium dioxide spheres, Diam. Relat. Mater. Materials 101 (2020) 107551.

DOI: 10.1016/j.diamond.2019.107551

Google Scholar

[28] J. Zhang, Q. Liu, J. Wang, H. He, F. Shi, B. Xing, J. Jia, G. Huang, C. Zhang, Facile preparation of carbon quantum dots/TiO2 composites at room temperature with improved visible-light photocatalytic activity J. Alloys Compd. 869 (2021) 159389.

DOI: 10.1016/j.jallcom.2021.159389

Google Scholar

[29] N. M. Zain, C. M. Lim, A. Usman, N. Keasberry, R. Thotagamuge, A. H. Mahadi, Synergistic effect of TiO2 size on activated carbon composites for ruthenium N-3 dye adsorption and photocatalytic degradation in wastewater treatment, Environ. Nanotechnol. Monit. Manag. 16 (2021)100567.

DOI: 10.1016/j.enmm.2021.100567

Google Scholar

[30] J. T. Carneiro, T.J. Savenije, J.A. Moulijn and G. Mul, How phase composition influences optoelectronic and photocatalytic properties of TiO2, J. Phys. Chem. C 115 (2011) 2211–2217.

DOI: 10.1021/jp110190a

Google Scholar

[31] S. P. Goutam, G. Saxena, V. Singh, A.K. Yadav, R.N. Bharagava, K.B. Thapa, Green synthesis of TiO2 nanoparticles using leaf extract of Jatropha curcas L.for photocatalytic degradation of tannery wastewater, Chem. Eng. J. 336 (2018) 386-396.

DOI: 10.1016/j.cej.2017.12.029

Google Scholar

[32] M.Y. Ghaly, T.S. Jamil, I.E. El-Seesy, E.R. Souaya, R.A. Nasr, Treatment of highly polluted paper mill wastewater by solar photocatalytic oxidation with synthesized nano TiO2, Chem. Eng. J. 168 (2011) 446–454.

DOI: 10.1016/j.cej.2011.01.028

Google Scholar

[33] A. Singh, V. Goyal, J.Singh, Mo. Rawa, Structural, morphological, optical and photocatalytic properties of green synthesized TiO2 NPs, Curr. Res. Green sustainable Chem. 3 (2020) 100033.

DOI: 10.1016/j.crgsc.2020.100033

Google Scholar

[34] G. Nabi, A. Majid, A. Riaz, T. Alharbi, M. A. Kamran, M. Al-Habardi, Green synthesis of spherical TiO2 nanoparticles using Citrus Limetta extract: Excellent photocatalytic water decontamination agent for RhB dye, Inorg. Chem. Commun. 129 (2021) 108618.

DOI: 10.1016/j.inoche.2021.108618

Google Scholar

[35] P. Singh, M.C. Vishnu, K. K. Sharma, A. Borthakur, P. Srivastava, D. B. Pal, D. Tiwary, P.K. Mishra, Photocatalytic degradation of acid red dye stuff in the presence of activated carbon-TiO2 composite and its kinetic enumeration, J. Water Process Eng. 12 (2016) 20–31.

DOI: 10.1016/j.jwpe.2016.04.007

Google Scholar

[36] W. Xu, Y. Jin, Y. Ren, J. Li, Z.Wei, C.Ban, H. Cai, M. Chen, Synergy mechanism for TiO2/activated carbon composite material: Photocatalytic degradation of methylene blue solution, Can. J. Chem. Eng. (2021) 1–15.

DOI: 10.1002/cjce.24097/v2/response1

Google Scholar

[37] W. Li, D. Du, T. Yan, D. Kong, J. You, D. Li, Relationship between surface hydroxyl groups and liquid-phase photo catalytic activity of titanium dioxide, J. Colloid Interface Sci. 444 (2015) 42–

DOI: 10.1016/j.jcis.2014.12.052

Google Scholar

[38] T. Somsiripan, C. Sangwichien, Enhancement of adsorption capacity of Methylene blue, Malachite green, and Rhodamine B onto KOH activated carbon derived from oil palm empty fruit bunches, Arab. J. Chem, 16(2023) 105270.

DOI: 10.1016/j.arabjc.2023.105270

Google Scholar

[39] H. Chen, Y. Yang, M. Hong, J. Chen, G, Suo, X. Hou, L. Feng, Z. Chen, Separable and recyclable meso-carbon@TiO2/carbon fiber composites for visible-light photocatalysis and photoelectrocatalysis, Sustain. Mater. Technol. 21 (2019) e00105.

DOI: 10.1016/j.susmat.2019.e00105

Google Scholar

[40] Y. Hou, Q. Lu, H. Wang, H. Li, Y. Zhang, S. Zhang, One-pot electrochemical synthesis of carbon dots/TiO2 nanocomposites with excellent visible light photocatalytic activity, Mater. Lett. 173 (2016) 13–17.

DOI: 10.1016/j.matlet.2016.03.003

Google Scholar