Numerical Study of Natural Convection in a Square Cavity Filled with Nanofluid

Article Preview

Abstract:

The aim of this work is the numerical study of natural convection in a square enclosure filled with nanofluids, using (Cu-water) and (TiO2- water) nanofluids. The finite volume method is used to solve the Navier-Stocks and energy equations. The effects of different relevant parameters, such as types of nanoparticles, volume fraction of nanoparticles (0-30%) and whose Rayleigh number varying from 103 to 106. It appears from this study that heat transfer increases by increasing the Rayleigh number and the volume fraction of the nanoparticles. The use of nanofluid enhances heat transfer, the highest heat transfer enhancement is observed in Cu-nanofluid. Consequently, the type of nanoparticle is a main factor for the enhancement of heat transfer. A comparison of our results with those of Barakos and Mitsoulis revealed a good agreement.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

15-26

Citation:

Online since:

October 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Lee, S.U.S. Choi. Application of Metallic Nanoparticle Suspensions in Advanced Cooling Systems. International Mechanical Engineering Congress and Exhibition, Atlanta, USA. 342 (1996) 227–234.

Google Scholar

[2] M. Shafahi, V. Bianco, K. Vafai and O. Manca. Thermal Performance of Flat-Shaped Heat Pipes Using Nanofluids. International Journal of Heat and Mass Transfer. 53, 7-8 (2010) 1438 – 1445.

DOI: 10.1016/j.ijheatmasstransfer.2009.12.007

Google Scholar

[3] K. Khanafer, K. Vafai, M. Lightstone, Buoyancy-driven heat transfer Enhancement in a two-dimensional enclosure utilizing nanofluids. Int J of Heat and Mass Transfer. 46 (2003) 3639–3653.

DOI: 10.1016/s0017-9310(03)00156-x

Google Scholar

[4] H.C. Brinkman. The viscosity of concentrated suspensions and solution. J. Chem. Phys. 20 (1952) 571–581.

Google Scholar

[5] I. Lahlal, S. Daoudi, K. Amghar, D. Bahia. Improving Natural Convection in a Nanofluid Filled Cavity Through SMART Numerical Simulation. In International Conference on Smart Medical, IoT & Artificial Intelligence,Cham: Springer Nature Switzerland.‏ (2024) 99-105.

DOI: 10.1007/978-3-031-66854-8_10

Google Scholar

[6] R. Bennacer, M. El Ganaoui, T. Maré, and C. T. Nguyen. Natural convection of nanofluids in cavity including the soret effect. Computational of Thermal Sciences. 4 (2009) 425– 440.

DOI: 10.1615/computthermalscien.v1.i4.40

Google Scholar

[7] M. El hattab, R. Mir, Y. El hammami, T. Mediouni. Simulation numerique de la convection naturelle des nanofluides dans une enceinte carrée chauffée par une source de chaleur. Revue Internationale d'héliotechnique. 45 (2013) 51-59.

Google Scholar

[8] H. Salhi, M. Si-Ameur. Convection naturelle dans les enceintes: nanofluide. Revue des Energies Renouvelables. 15(2012) 121 – 130.

DOI: 10.54966/jreen.v15i1.306

Google Scholar

[9] M. Corione, A. Quintino. Double-Diffusive Effects on the Onset of Rayleigh-Benard Convection of Water-Based Nanofluids. Appl. Sci. 2022, 12, 8485.

DOI: 10.3390/app12178485

Google Scholar

[10] C.J. Ho, W.K. Liu, Y.S. Chang and C.C. Lin. Natural Convection Heat Transfer of Alumina–Water Nanofluid in Vertical Square Enclosures: An Experimental Study. International Journal of Thermal Sciences. 49 (2010) 1345 – 1353.

DOI: 10.1016/j.ijthermalsci.2010.02.013

Google Scholar

[11] R. Rudrabhiramu, K.K. Kupireddi, K.M. Rao. Study of Thermal Characteristics Augmentation of the Aluminium Oxide Nano Fluid with Different Base Fluids. International Journal of Heat and Technology Vol. 39, No. 6, December, 2021, pp.2000-2005.

DOI: 10.18280/ijht.390639

Google Scholar

[12] M. Ouakarrouch, K. El Azhary, N. Laaroussi, M. Garoum. Three-dimensional numerical simulation of conduction, natural convection, and radiation through alveolar building. Case Studies in Construction Materials. Volume 11, December 2019, e00249.

DOI: 10.1016/j.cscm.2019.e00249

Google Scholar

[13] M. Hosseini, M.T. Mustafa, M. Jafaryar, E. Mohammadian. Nanofluid in tilted cavity with partially heated walls. Journal of Molecular Liquids volume. 199 (2014) 545–551.

DOI: 10.1016/j.molliq.2014.09.051

Google Scholar

[14] J. C. Maxwell-Garnett, "Colours in metal glasses and in metallic films," Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 203(1904) 385–420.

DOI: 10.1098/rsta.1904.0024

Google Scholar

[15] S.M. Aminossadati, B. Ghasemi, Natural convection cooling of a localised heat source at the bottom of a nanofluid-filled enclosure. European Journal of Mechanics B/Fluids .28 (2009) 630– 640.

DOI: 10.1016/j.euromechflu.2009.05.006

Google Scholar

[16] O. Ghoulam, H. Talbi, K. Amghar, A. Amrani, A. Charef, I. Driouch. Heat transfer improvement in turbulent flow using detached obstacles in heat exchanger duct. International Journal of Thermofluids. 27 (2025), 101225.

DOI: 10.1016/j.ijft.2025.101225

Google Scholar

[17] O. Hakan F., and E. Abu-Nada. Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids. International journal of heat and fluid flow 29.5 (2008) 1326-1336.‏

DOI: 10.1016/j.ijheatfluidflow.2008.04.009

Google Scholar

[18] G. Barakos, E. Mitsoulis. Natural convection flow in a square cavity revisited: laminar and turbulent models with wall functions. Int. J. Num. Meth. Fluids .18 (1994) 695–719.

DOI: 10.1002/fld.1650180705

Google Scholar

[19] N. Putra, W.Roetzel, S.K. Das, 2003. Natural convection of nanofluids. J. Heat Mass Transfer, 39, pp.775-784.

DOI: 10.1007/s00231-002-0382-z

Google Scholar

[20] K. Amghar, A. Filali, M.A. Louhibi, H. Bouali, N. Salhi, M. Salhi. Numerical study of turbulent heat transfer in a horizontal channel provided with square blocks: Effect of the inter-block spacing. Journal of thermal Engineering, 7, pp.650-665 (2021).

DOI: 10.18186/thermal.890073

Google Scholar

[21] O. Ghoulam, H. Tlabi, K . Amghar, A. Amrani, I. Driouch. Heat transfer improvement in turbulent flow using detached obstacles in heat exchanger duct. International Journal of thermofluids, 27, 10.1016/j.ijft.2025.101225 (2025).

DOI: 10.1016/j.ijft.2025.101225

Google Scholar

[22] K.Amghar, H. Ameur, H. Bouali, N. Salhi. Numerical study of thermal and dynamic structure of a laminar flow in solar collector. Materials Today: Proceedings, 45, p.7501–7506 (2021).

DOI: 10.1016/j.matpr.2021.02.258

Google Scholar

[23] E. Abu-Nada, Z. Masoud, A. Hijazi, 2008. Natural convection heat transfer enhancement in horizontal concentric annuli using nanofluids, 35, p.657–665.

DOI: 10.1016/j.icheatmasstransfer.2007.11.004

Google Scholar

[24] I. Ahmad Faris,R. Welvakar, M. Khalid, 2003.Numerical Study on Buoyancy Driven Heat Transfer Utilizing Nanofluids in a Rectangular Enclosure, In Proceedings of the UK-Malaysia engineering conference (pp.118-123).

Google Scholar