Numerical Investigation of Laminar Flow and Heat Transfer in a Bifurcated Backwards-Facing Step in the Presence of an Elastic Fin

Article Preview

Abstract:

Passive Flow Control in Pipelines is gaining increased importance in the field of fluid transport, particularly in oil and gas applications. This approach relies on the installation of passive devices designed to alter fluid flow paths by generating suppression zones. Among these devices, fins are particularly notable. Hence, the objective of this paper is to provide a numerical investigation into the behavior of laminar flow within a bifurcated backward-facing step (BFS), controlled through the installation of a flexible fin at the lower wall of the enlarged duct part, with varying mechanical stiffness and positioning. The study considers a flow through an expanded conduit, where the fluid enters with a predefined velocity profile and subsequently splits into two sub-conduits. The investigation focuses on examining the influence of fin length (0.5 ≤ Lc/H ≤ 1), position (4 ≤ x0/H ≤ 7), and elasticity on the elasto-hydrodynamic structure of the flow, including vortex formation, flow separation, the maximum displacement of the flexible fin, and the efficiency of the sub-conduits at the outlet. This analysis is governed by the momentum equations, coupled with solid mechanics equations, using the Arbitrary Lagrangian-Eulerian (ALE) framework. The governing equations are solved using the finite element method, implemented through the simulation and the sliding mesh technique in COMSOL Multiphysics 5.7. The numerical results reveal that installing a flexible or rigid fin within the BFS system significantly impacts the non-isothermal flow behavior within the bifurcation ducts. This configuration effectively allows for flowrate regulation at the BFS outlet, also making it possible to equalize flow rates under specific conditions, particularly when using longer fin that extend halfway across the channel. Moreover, the fin placement on the bottom is important for achieving effective flow rate control and heat transfer, aligning with desired requirements for each branch outlet.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

27-55

Citation:

Online since:

October 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Q. Zou, H. Chen, Wind and current effects on extreme wave formation and breaking, J. Phys. Oceanogr. 47 (2017) 1817–1841. doi.org/

DOI: 10.1175/JPO-D-16-0183.1

Google Scholar

[2] B. Aravind, G.K.S. Raghuram, V.R. Kishore, S. Kumar, Compact design of planar stepped micro combustor for portable thermoelectric power generation, Energy Convers. Manag. 156 (2018) 224–234. . doi.org/

DOI: 10.1016/j.enconman.2017.11.021

Google Scholar

[3] S. Muthu Kumaran, V. Raghavan, Experimental study of non-premixed flames of liquefied petroleum gas and air in cross-flow and the effects of fuel properties on flame stability, Int. J. Turbo Jet Engines 37 (2020) 549–557

DOI: 10.1515/tjj-2019-0038

Google Scholar

[4] H. Talaei, H.-R. Bahrami, Backward-facing step heat transfer enhancement: a systematic study using porous baffles with different shapes and locations and corrugating after step wall, Heat Mass Transf 59 (2023) 2213–2230

DOI: 10.1007/s00231-023-03401-8

Google Scholar

[5] L. Henning, R. King, Multivariable closed-loop control of the reattachment length downstream of a backward-facing step, IFAC Proc. Vol. 16 (2005) 235–240

DOI: 10.3182/20050703-6-CZ-1902.02000

Google Scholar

[6] A. Kumar, A.K. Dhiman, Effect of a circular cylinder on separated forced convection at a backward-facing step, Int. J. Therm. Sci. 52 (2012) 176–185

DOI: 10.1016/j.ijthermalsci.2011.09.014

Google Scholar

[7] B.K.M. Saleem, A. Mustafa, D.A. Kareem, M.I. Yuce, M. Szydłowski, N. Al-Ansari, Numerical analysis of turbulent flow over a backward-facing step in an open channel, Arch. Hydroeng. Environ. Mech. 70 (2023) 49–69

DOI: 10.2478/heem-2023-0004

Google Scholar

[8] B.F. Armaly, F. Durst, J.C.F. Pereira, B. Schönung, Experimental and theoretical investigation of backward-facing step flow, J. Fluid Mech. 127 (1983) 473–496

DOI: 10.1017/S0022112083002839

Google Scholar

[9] K.B. Chun, H.J. Sung, Control of turbulent separated flow over a backward-facing step by local forcing, Exp. Fluids 21 (1996) 417–426

DOI: 10.1007/BF00189044

Google Scholar

[10] A. Mushyam, J.M. Bergada, C.N. Nayeri, A numerical investigation of laminar flow over a backward-facing inclined step, Meccanica 51 (2016) 1739–1762

DOI: 10.1007/s11012-015-0335-5

Google Scholar

[11] A.K. Hilo, A.R. Abu Talib, A. Acosta Iborra, M.T. Hameed Sultan, M.F. Abdul Hamid, Effect of corrugated wall combined with backward-facing step channel on fluid flow and heat transfer, Energy 190 (2020) 116–294

DOI: 10.1016/j.energy.2019.116294

Google Scholar

[12] A.S. Abedalh, Z.A. Shaalan, H.N. Saleh Yassien, Mixed convective of hybrid nanofluids flow in a backward-facing step, Case Stud. Therm. Eng. 25 (2021) 100–868

DOI: 10.1016/j.csite.2021.100868

Google Scholar

[13] R. Nath, M. Krishnan, Thermo-solutal buoyancy effect on heat and mass transfer in a backward-facing step channel under the influence of different shapes of nanoparticles, J. Therm. Sci. Eng. Appl. 12 (2020)

DOI: 10.1115/1.4046010

Google Scholar

[14] M. Abdollahpour, P. Gualtieri, D.F. Vetsch, C. Gualtieri, Numerical study of flow downstream a step with a cylinder Part 2: Effect of a cylinder on the flow over the step, Fluids 8 (2023) 60

DOI: 10.3390/fluids8020060

Google Scholar

[15] A.V. Barsukov, V.V. Terekhov, V.I. Terekhov, Effect of a passive disturbance on the flow structure and heat transfer in the separation region behind a backward-facing step, High Temp. 59 (2021) 115–120

DOI: 10.1134/S0018151X21010028

Google Scholar

[16] Y. Ma, F. Ren, H. Tang, C. Wang, Vortex synchronization-enabled heat-transfer enhancement in a channel with backward- and forward-facing steps, Phys. Fluids 36 (2024)

DOI: 10.1063/5.0197059

Google Scholar

[17] F. Hu, Z. Wang, T. Tamai, S. Koshizuka, Consistent inlet and outlet boundary conditions for particle methods, Int. J. Numer. Meth. Fluids 92 (2020) 1–19

DOI: 10.1002/fld.4768

Google Scholar

[18] A. Issakhov, Y. Zhandaulet, A. Abylkassyomova, M. Sakypbekova, A. Issakhov, Mixed convection in a channel with buoyancy force over backward and forward-facing steps: The effects of inclination and geometry, Case Stud. Therm. Eng. 26 (2021) 101–152

DOI: 10.1016/j.csite.2021.101152

Google Scholar

[19] W.-C. Chang, P.-H. Chung, K.-C. Chang, The effect of vortex generators on a compressible backward-facing step flow, J. Aeronaut. Astronaut. Aviat. 55 (2023) 135–142

Google Scholar

[20] D. Luo, Y. Bai, Z. Wang, Numerical study on the flow control mechanisms of an off-surface circular cylinder for wall-bounded flows with separation, Ocean Eng. 294 (2024) 116–729

DOI: 10.1016/j.oceaneng.2024.116729

Google Scholar

[21] R.J. KC, T.C. Wilson, N.A. Lucido, A.S. Alexander, J.D. Jacob, B.R. Elbing, Laminar boundary layer over a serrated backward-facing step, Fluids 9 (2024) 135

DOI: 10.3390/fluids9060135

Google Scholar

[22] T. Schaub, F. Arbeiter, W. Hering, R. Stieglitz, Forced and mixed convection experiments in a confined vertical backward-facing step at low-Prandtl number, Exp. Fluids 63 (2022) 1–20

DOI: 10.1007/s00348-021-03363-9

Google Scholar

[23] K. Sreekesh, D.K. Tafti, S. Vengadesan, Large-eddy simulation investigation of modified rib shapes on heat transfer in a ribbed duct, J. Heat Transf. 143 (2021) 11

DOI: 10.1115/1.4051507

Google Scholar

[24] M. Abdollahpour, P. Gualtieri, D.F. Vetsch, C. Gualtieri, Numerical study of flow downstream a step with a cylinder Part 1: Validation of the numerical simulations, Fluids 8 (2023) 55

DOI: 10.3390/fluids8020055

Google Scholar

[25] A.H. Abdulkarim, M.A. Eleiwi, T.A. Tahseen, E. Canli, Numerical forced convection heat transfer of nanofluids over back facing step and through heated circular grooves, Math. Model. Eng. Probl. 8 (2021) 597–610

DOI: 10.18280/mmep.080413

Google Scholar

[26] M. Liu, M. Sun, D. Yang, G. Zhao, T. Tang, B. An, H. Wang, Mixing and combustion characteristics in a scramjet combustor with different distances between cavity and backward-facing step, Chin. J. Aeronaut. 36 (2023) 400–411

DOI: 10.1016/j.cja.2023.04.013

Google Scholar

[27] J. Zhai, C.-A. Zhang, F.-M. Wang, W.-W. Zhang, Control of shock-wave/boundary-layer interaction using a backward-facing step, Aerosp. Sci. Technol. 126 (2022) 107–665

DOI: 10.1016/j.ast.2022.107665

Google Scholar

[28] W. Hu, S. Hickel, B.W. van Oudheusden, Unsteady mechanisms in shock wave and boundary layer interactions over a forward-facing step, J. Fluid Mech. 949 (2022)

DOI: 10.1017/jfm.2022.737

Google Scholar

[29] J. Liu, A.L. Marsden, A unified continuum and variational multiscale formulation for fluids, solids, and fluid–structure interaction, Comput. Methods Appl. Mech. Eng. 337 (2018) 549–597

DOI: 10.1016/j.cma.2018.03.045

Google Scholar

[30] S. Michele, S. Zheng, D. Greaves, Wave energy extraction from a floating flexible circular plate, Ocean Eng. 245 (2022) 110275

DOI: 10.1016/j.oceaneng.2021.110275

Google Scholar

[31] M. Ghalambaz, S.A.M. Mehryan, M.A. Ismael, A. Chamkha, D. Wen, Fluid–structure interaction of free convection in a square cavity divided by a flexible membrane and subjected to sinusoidal temperature heating, Int. J. Numer. Methods Heat Fluid Flow 30 (2020) 2883–2911

DOI: 10.1108/HFF-12-2018-0826

Google Scholar

[32] A. Lelong, P. Guiffant, J.A. Astolfi, An experimental analysis of the structural response of flexible lightweight hydrofoils in cavitating flow, J. Fluids Eng. 140 (2018) 021–104

DOI: 10.1115/1.4037990

Google Scholar

[33] H. Saleh, Z. Siri, I. Hashim, Role of fluid-structure interaction in mixed convection from a circular cylinder in a square enclosure with double flexible oscillating fins, Int. J. Mech. Sci. 161 (2019) 105080

DOI: 10.1016/j.ijmecsci.2019.105080

Google Scholar

[34] M.R. Amiralaei, H. Alighanbari, S.M. Hashemi, Flow field characteristics study of a flapping airfoil using computational fluid dynamics, J. Fluids Struct. 27 (2011) 1068–1085

DOI: 10.1016/j.jfluidstructs.2011.06.005

Google Scholar

[35] A. Ducoin, J.A. Astolfi, J.F. Sigrist, An experimental analysis of fluid-structure interaction on a flexible hydrofoil in various flow regimes including cavitating flow, Eur. J. Mech. B Fluids 36 (2012) 63–74

DOI: 10.1016/j.euromechflu.2012.03.009

Google Scholar

[36] D.T. Yaseen, A.J. Majeed, M.A. Ismael, Cooling of hot cylinder placed in a flexible backward-facing step channel, Therm. Sci. Eng. Prog. 33 (2022) 101–364

DOI: 10.1016/j.tsep.2022.101364

Google Scholar

[37] S. Kumar, S. Vengadesan, The effect of fin oscillation in heat transfer enhancement in separated flow over a backward facing step, Int. J. Heat Mass Transf. 128 (2019) 954–963

DOI: 10.1016/j.ijheatmasstransfer.2018.09.001

Google Scholar

[38] A. Kada, M. Elmir, A. Mokhefi, M. Bouanini, P. Spiteri, Numerical study of the elasto-hydrodynamic behavior of a metallic structure subjected to a nanofluid flow, Int. J. Heat Technol. 40 (2022) 1176–1183

DOI: 10.18280/ijht.400318

Google Scholar

[39] C. Huang, A.G.L. Borthwick, Z. Lin, Lagrangian coherent structures in flow past a back ward-facing step, J. Fluid Mech. 947 (2022)

DOI: 10.1017/jfm.2022.631

Google Scholar

[40] X. Ma, Z. Tang, N. Jiang, Eulerian and Lagrangian analysis of coherent structures in separated shear flow by time-resolved particle image velocimetry, Phys. Fluids 32 (2020) 065107

DOI: 10.1063/5.0008664

Google Scholar

[41] D.S. Pearson, P.J. Goulart, B. Ganapathisubramani, Turbulent separation upstream of a forward-facing step, J. Fluid Mech. 724 (2013) 284–304

DOI: 10.1017/jfm.2013.113

Google Scholar

[42] A. Capone, M. Miozzi, G.P. Romano, On translational and rotational relative velocities of fibers and fluid in a turbulent channel flow with a backward-facing step, Int. J. Multiph. Flow 94 (2017) 189–200

DOI: 10.1016/j.ijmultiphaseflow.2017.04.021

Google Scholar

[43] L. Lampani, R. Grillo, P. Gaudenzi, Finite element models of piezoelectric actuation for active flow control, Acta Astronaut. 71 (2012) 129–138

DOI: 10.1016/j.actaastro.2011.07.026

Google Scholar

[44] E. Yim, P. Meliga, F. Gallaire, Self-consistent triple decomposition of the turbulent flow over a backward-facing step under finite amplitude harmonic forcing, Proc. R. Soc. A 475 (2019) 2019–0018

DOI: 10.1098/rspa.2019.0018

Google Scholar

[45] G.K. Bojan, J.C. Dutton, G.S. Elliott, Fluid/Structure interaction of cantilevered plate in supersonic separated flow, AIAA J. 60 (2022) 6726–6738

DOI: 10.2514/1.J061883

Google Scholar

[46] F.-C. Yang, X.-P. Chen, Numerical simulation of two-dimensional viscous flows using combined finite element-immersed boundary method, J. Hydrodyn. 27 (2015) 658–667

DOI: 10.1016/S1001-6058(15)60528-5

Google Scholar

[47] G.A. Brés, T. Colonius, Three-dimensional instabilities in compressible flow over open cavities, J. Fluid Mech. 599 (2008) 309–339

DOI: 10.1017/S0022112007009925

Google Scholar

[48] A. Mishra, M. Hanzla, A. De, Passive control of the onset of vortex shedding in flow past a circular cylinder using slit, Phys. Fluids 32 (2020) 013–603

DOI: 10.1063/1.5132799

Google Scholar

[49] I. Bolgar, S. Scharnowski, C.J. Kähler, Passive flow control for reduced load dynamics aft of a backward-facing step, AIAA J. 57 (2019) 120–131

DOI: 10.2514/1.J057274

Google Scholar

[50] S. Hussain, S.E. Ahmed, Unsteady MHD forced convection over a backward facing step including a rotating cylinder utilizing Fe₃O₄-water ferrofluid, J. Magn. Magn. Mater. 484 (2019) 356–366

DOI: 10.1016/j.jmmm.2019.04.040

Google Scholar

[51] M. Toumi, M. Bouzit, F. Bouzit, A. Mokhefi, MHD forced convection using ferrofluid over a backward facing step containing a finned cylinder, Acta Mech. Autom. 16 (2022) 70–81

DOI: 10.2478/ama-2022-0009

Google Scholar

[52] B. Fatna, A. Mokhefi, A. Hamid, G. Yacine, M.F. Zohra, P. Spitéri, Numerical investigation of the thermal convective phenomenon around a circular micro-coil with variable internal width, Prod. Eng. 17 (2023) 653–668

DOI: 10.1007/s11740-023-01195-6

Google Scholar

[53] D.T. Yaseen, M.A. Ismael, Analysis of power law fluid-structure interaction in an open trapezoidal cavity, Int. J. Mech. Sci. 174 (2020) 105–481

DOI: 10.1016/j.ijmecsci.2020.105481

Google Scholar

[54] E. Kuhl, S. Hulshoff, R. De Borst, An arbitrary Lagrangian-Eulerian finite-element approach for fluid–structure interaction phenomena, Int. J. Numer. Meth. Eng. 57 (2003) 117–142

DOI: 10.1002/nme.749

Google Scholar

[55] A. Kumar, A.K. Dhiman, Effect of a circular cylinder on separated forced convection at a backward-facing step, Int. J. Therm. Sci. 52 (2012) 176–185

DOI: 10.1016/j.ijthermalsci.2011.09.014

Google Scholar