[1]
Q. Zou, H. Chen, Wind and current effects on extreme wave formation and breaking, J. Phys. Oceanogr. 47 (2017) 1817–1841. doi.org/
DOI: 10.1175/JPO-D-16-0183.1
Google Scholar
[2]
B. Aravind, G.K.S. Raghuram, V.R. Kishore, S. Kumar, Compact design of planar stepped micro combustor for portable thermoelectric power generation, Energy Convers. Manag. 156 (2018) 224–234. . doi.org/
DOI: 10.1016/j.enconman.2017.11.021
Google Scholar
[3]
S. Muthu Kumaran, V. Raghavan, Experimental study of non-premixed flames of liquefied petroleum gas and air in cross-flow and the effects of fuel properties on flame stability, Int. J. Turbo Jet Engines 37 (2020) 549–557
DOI: 10.1515/tjj-2019-0038
Google Scholar
[4]
H. Talaei, H.-R. Bahrami, Backward-facing step heat transfer enhancement: a systematic study using porous baffles with different shapes and locations and corrugating after step wall, Heat Mass Transf 59 (2023) 2213–2230
DOI: 10.1007/s00231-023-03401-8
Google Scholar
[5]
L. Henning, R. King, Multivariable closed-loop control of the reattachment length downstream of a backward-facing step, IFAC Proc. Vol. 16 (2005) 235–240
DOI: 10.3182/20050703-6-CZ-1902.02000
Google Scholar
[6]
A. Kumar, A.K. Dhiman, Effect of a circular cylinder on separated forced convection at a backward-facing step, Int. J. Therm. Sci. 52 (2012) 176–185
DOI: 10.1016/j.ijthermalsci.2011.09.014
Google Scholar
[7]
B.K.M. Saleem, A. Mustafa, D.A. Kareem, M.I. Yuce, M. Szydłowski, N. Al-Ansari, Numerical analysis of turbulent flow over a backward-facing step in an open channel, Arch. Hydroeng. Environ. Mech. 70 (2023) 49–69
DOI: 10.2478/heem-2023-0004
Google Scholar
[8]
B.F. Armaly, F. Durst, J.C.F. Pereira, B. Schönung, Experimental and theoretical investigation of backward-facing step flow, J. Fluid Mech. 127 (1983) 473–496
DOI: 10.1017/S0022112083002839
Google Scholar
[9]
K.B. Chun, H.J. Sung, Control of turbulent separated flow over a backward-facing step by local forcing, Exp. Fluids 21 (1996) 417–426
DOI: 10.1007/BF00189044
Google Scholar
[10]
A. Mushyam, J.M. Bergada, C.N. Nayeri, A numerical investigation of laminar flow over a backward-facing inclined step, Meccanica 51 (2016) 1739–1762
DOI: 10.1007/s11012-015-0335-5
Google Scholar
[11]
A.K. Hilo, A.R. Abu Talib, A. Acosta Iborra, M.T. Hameed Sultan, M.F. Abdul Hamid, Effect of corrugated wall combined with backward-facing step channel on fluid flow and heat transfer, Energy 190 (2020) 116–294
DOI: 10.1016/j.energy.2019.116294
Google Scholar
[12]
A.S. Abedalh, Z.A. Shaalan, H.N. Saleh Yassien, Mixed convective of hybrid nanofluids flow in a backward-facing step, Case Stud. Therm. Eng. 25 (2021) 100–868
DOI: 10.1016/j.csite.2021.100868
Google Scholar
[13]
R. Nath, M. Krishnan, Thermo-solutal buoyancy effect on heat and mass transfer in a backward-facing step channel under the influence of different shapes of nanoparticles, J. Therm. Sci. Eng. Appl. 12 (2020)
DOI: 10.1115/1.4046010
Google Scholar
[14]
M. Abdollahpour, P. Gualtieri, D.F. Vetsch, C. Gualtieri, Numerical study of flow downstream a step with a cylinder Part 2: Effect of a cylinder on the flow over the step, Fluids 8 (2023) 60
DOI: 10.3390/fluids8020060
Google Scholar
[15]
A.V. Barsukov, V.V. Terekhov, V.I. Terekhov, Effect of a passive disturbance on the flow structure and heat transfer in the separation region behind a backward-facing step, High Temp. 59 (2021) 115–120
DOI: 10.1134/S0018151X21010028
Google Scholar
[16]
Y. Ma, F. Ren, H. Tang, C. Wang, Vortex synchronization-enabled heat-transfer enhancement in a channel with backward- and forward-facing steps, Phys. Fluids 36 (2024)
DOI: 10.1063/5.0197059
Google Scholar
[17]
F. Hu, Z. Wang, T. Tamai, S. Koshizuka, Consistent inlet and outlet boundary conditions for particle methods, Int. J. Numer. Meth. Fluids 92 (2020) 1–19
DOI: 10.1002/fld.4768
Google Scholar
[18]
A. Issakhov, Y. Zhandaulet, A. Abylkassyomova, M. Sakypbekova, A. Issakhov, Mixed convection in a channel with buoyancy force over backward and forward-facing steps: The effects of inclination and geometry, Case Stud. Therm. Eng. 26 (2021) 101–152
DOI: 10.1016/j.csite.2021.101152
Google Scholar
[19]
W.-C. Chang, P.-H. Chung, K.-C. Chang, The effect of vortex generators on a compressible backward-facing step flow, J. Aeronaut. Astronaut. Aviat. 55 (2023) 135–142
Google Scholar
[20]
D. Luo, Y. Bai, Z. Wang, Numerical study on the flow control mechanisms of an off-surface circular cylinder for wall-bounded flows with separation, Ocean Eng. 294 (2024) 116–729
DOI: 10.1016/j.oceaneng.2024.116729
Google Scholar
[21]
R.J. KC, T.C. Wilson, N.A. Lucido, A.S. Alexander, J.D. Jacob, B.R. Elbing, Laminar boundary layer over a serrated backward-facing step, Fluids 9 (2024) 135
DOI: 10.3390/fluids9060135
Google Scholar
[22]
T. Schaub, F. Arbeiter, W. Hering, R. Stieglitz, Forced and mixed convection experiments in a confined vertical backward-facing step at low-Prandtl number, Exp. Fluids 63 (2022) 1–20
DOI: 10.1007/s00348-021-03363-9
Google Scholar
[23]
K. Sreekesh, D.K. Tafti, S. Vengadesan, Large-eddy simulation investigation of modified rib shapes on heat transfer in a ribbed duct, J. Heat Transf. 143 (2021) 11
DOI: 10.1115/1.4051507
Google Scholar
[24]
M. Abdollahpour, P. Gualtieri, D.F. Vetsch, C. Gualtieri, Numerical study of flow downstream a step with a cylinder Part 1: Validation of the numerical simulations, Fluids 8 (2023) 55
DOI: 10.3390/fluids8020055
Google Scholar
[25]
A.H. Abdulkarim, M.A. Eleiwi, T.A. Tahseen, E. Canli, Numerical forced convection heat transfer of nanofluids over back facing step and through heated circular grooves, Math. Model. Eng. Probl. 8 (2021) 597–610
DOI: 10.18280/mmep.080413
Google Scholar
[26]
M. Liu, M. Sun, D. Yang, G. Zhao, T. Tang, B. An, H. Wang, Mixing and combustion characteristics in a scramjet combustor with different distances between cavity and backward-facing step, Chin. J. Aeronaut. 36 (2023) 400–411
DOI: 10.1016/j.cja.2023.04.013
Google Scholar
[27]
J. Zhai, C.-A. Zhang, F.-M. Wang, W.-W. Zhang, Control of shock-wave/boundary-layer interaction using a backward-facing step, Aerosp. Sci. Technol. 126 (2022) 107–665
DOI: 10.1016/j.ast.2022.107665
Google Scholar
[28]
W. Hu, S. Hickel, B.W. van Oudheusden, Unsteady mechanisms in shock wave and boundary layer interactions over a forward-facing step, J. Fluid Mech. 949 (2022)
DOI: 10.1017/jfm.2022.737
Google Scholar
[29]
J. Liu, A.L. Marsden, A unified continuum and variational multiscale formulation for fluids, solids, and fluid–structure interaction, Comput. Methods Appl. Mech. Eng. 337 (2018) 549–597
DOI: 10.1016/j.cma.2018.03.045
Google Scholar
[30]
S. Michele, S. Zheng, D. Greaves, Wave energy extraction from a floating flexible circular plate, Ocean Eng. 245 (2022) 110275
DOI: 10.1016/j.oceaneng.2021.110275
Google Scholar
[31]
M. Ghalambaz, S.A.M. Mehryan, M.A. Ismael, A. Chamkha, D. Wen, Fluid–structure interaction of free convection in a square cavity divided by a flexible membrane and subjected to sinusoidal temperature heating, Int. J. Numer. Methods Heat Fluid Flow 30 (2020) 2883–2911
DOI: 10.1108/HFF-12-2018-0826
Google Scholar
[32]
A. Lelong, P. Guiffant, J.A. Astolfi, An experimental analysis of the structural response of flexible lightweight hydrofoils in cavitating flow, J. Fluids Eng. 140 (2018) 021–104
DOI: 10.1115/1.4037990
Google Scholar
[33]
H. Saleh, Z. Siri, I. Hashim, Role of fluid-structure interaction in mixed convection from a circular cylinder in a square enclosure with double flexible oscillating fins, Int. J. Mech. Sci. 161 (2019) 105080
DOI: 10.1016/j.ijmecsci.2019.105080
Google Scholar
[34]
M.R. Amiralaei, H. Alighanbari, S.M. Hashemi, Flow field characteristics study of a flapping airfoil using computational fluid dynamics, J. Fluids Struct. 27 (2011) 1068–1085
DOI: 10.1016/j.jfluidstructs.2011.06.005
Google Scholar
[35]
A. Ducoin, J.A. Astolfi, J.F. Sigrist, An experimental analysis of fluid-structure interaction on a flexible hydrofoil in various flow regimes including cavitating flow, Eur. J. Mech. B Fluids 36 (2012) 63–74
DOI: 10.1016/j.euromechflu.2012.03.009
Google Scholar
[36]
D.T. Yaseen, A.J. Majeed, M.A. Ismael, Cooling of hot cylinder placed in a flexible backward-facing step channel, Therm. Sci. Eng. Prog. 33 (2022) 101–364
DOI: 10.1016/j.tsep.2022.101364
Google Scholar
[37]
S. Kumar, S. Vengadesan, The effect of fin oscillation in heat transfer enhancement in separated flow over a backward facing step, Int. J. Heat Mass Transf. 128 (2019) 954–963
DOI: 10.1016/j.ijheatmasstransfer.2018.09.001
Google Scholar
[38]
A. Kada, M. Elmir, A. Mokhefi, M. Bouanini, P. Spiteri, Numerical study of the elasto-hydrodynamic behavior of a metallic structure subjected to a nanofluid flow, Int. J. Heat Technol. 40 (2022) 1176–1183
DOI: 10.18280/ijht.400318
Google Scholar
[39]
C. Huang, A.G.L. Borthwick, Z. Lin, Lagrangian coherent structures in flow past a back ward-facing step, J. Fluid Mech. 947 (2022)
DOI: 10.1017/jfm.2022.631
Google Scholar
[40]
X. Ma, Z. Tang, N. Jiang, Eulerian and Lagrangian analysis of coherent structures in separated shear flow by time-resolved particle image velocimetry, Phys. Fluids 32 (2020) 065107
DOI: 10.1063/5.0008664
Google Scholar
[41]
D.S. Pearson, P.J. Goulart, B. Ganapathisubramani, Turbulent separation upstream of a forward-facing step, J. Fluid Mech. 724 (2013) 284–304
DOI: 10.1017/jfm.2013.113
Google Scholar
[42]
A. Capone, M. Miozzi, G.P. Romano, On translational and rotational relative velocities of fibers and fluid in a turbulent channel flow with a backward-facing step, Int. J. Multiph. Flow 94 (2017) 189–200
DOI: 10.1016/j.ijmultiphaseflow.2017.04.021
Google Scholar
[43]
L. Lampani, R. Grillo, P. Gaudenzi, Finite element models of piezoelectric actuation for active flow control, Acta Astronaut. 71 (2012) 129–138
DOI: 10.1016/j.actaastro.2011.07.026
Google Scholar
[44]
E. Yim, P. Meliga, F. Gallaire, Self-consistent triple decomposition of the turbulent flow over a backward-facing step under finite amplitude harmonic forcing, Proc. R. Soc. A 475 (2019) 2019–0018
DOI: 10.1098/rspa.2019.0018
Google Scholar
[45]
G.K. Bojan, J.C. Dutton, G.S. Elliott, Fluid/Structure interaction of cantilevered plate in supersonic separated flow, AIAA J. 60 (2022) 6726–6738
DOI: 10.2514/1.J061883
Google Scholar
[46]
F.-C. Yang, X.-P. Chen, Numerical simulation of two-dimensional viscous flows using combined finite element-immersed boundary method, J. Hydrodyn. 27 (2015) 658–667
DOI: 10.1016/S1001-6058(15)60528-5
Google Scholar
[47]
G.A. Brés, T. Colonius, Three-dimensional instabilities in compressible flow over open cavities, J. Fluid Mech. 599 (2008) 309–339
DOI: 10.1017/S0022112007009925
Google Scholar
[48]
A. Mishra, M. Hanzla, A. De, Passive control of the onset of vortex shedding in flow past a circular cylinder using slit, Phys. Fluids 32 (2020) 013–603
DOI: 10.1063/1.5132799
Google Scholar
[49]
I. Bolgar, S. Scharnowski, C.J. Kähler, Passive flow control for reduced load dynamics aft of a backward-facing step, AIAA J. 57 (2019) 120–131
DOI: 10.2514/1.J057274
Google Scholar
[50]
S. Hussain, S.E. Ahmed, Unsteady MHD forced convection over a backward facing step including a rotating cylinder utilizing Fe₃O₄-water ferrofluid, J. Magn. Magn. Mater. 484 (2019) 356–366
DOI: 10.1016/j.jmmm.2019.04.040
Google Scholar
[51]
M. Toumi, M. Bouzit, F. Bouzit, A. Mokhefi, MHD forced convection using ferrofluid over a backward facing step containing a finned cylinder, Acta Mech. Autom. 16 (2022) 70–81
DOI: 10.2478/ama-2022-0009
Google Scholar
[52]
B. Fatna, A. Mokhefi, A. Hamid, G. Yacine, M.F. Zohra, P. Spitéri, Numerical investigation of the thermal convective phenomenon around a circular micro-coil with variable internal width, Prod. Eng. 17 (2023) 653–668
DOI: 10.1007/s11740-023-01195-6
Google Scholar
[53]
D.T. Yaseen, M.A. Ismael, Analysis of power law fluid-structure interaction in an open trapezoidal cavity, Int. J. Mech. Sci. 174 (2020) 105–481
DOI: 10.1016/j.ijmecsci.2020.105481
Google Scholar
[54]
E. Kuhl, S. Hulshoff, R. De Borst, An arbitrary Lagrangian-Eulerian finite-element approach for fluid–structure interaction phenomena, Int. J. Numer. Meth. Eng. 57 (2003) 117–142
DOI: 10.1002/nme.749
Google Scholar
[55]
A. Kumar, A.K. Dhiman, Effect of a circular cylinder on separated forced convection at a backward-facing step, Int. J. Therm. Sci. 52 (2012) 176–185
DOI: 10.1016/j.ijthermalsci.2011.09.014
Google Scholar