[1]
G.H. Lee, H. Pouraria, J.K. Seo et al., Burst strength behaviour of an aging subsea gas pipeline elbow in different external and internal corrosion-damaged positions. Int. J. Nav. Archit. Ocean Eng. 7 (3), 435-451(2015).
DOI: 10.1515/ijnaoe-2015-0031
Google Scholar
[2]
B. Ma, J. Shuai, D. Liu et al., Assessment on failure pressure of high strength pipeline with corrosion defects. Eng Fail Anal. 32, 209-219(2013).
DOI: 10.1016/j.engfailanal.2013.03.015
Google Scholar
[3]
Y. Shuai, J. Shuai, K. Xu, Probabilistic analysis of corroded pipelines based on a new failure pressure model. Eng Fail Anal. 81, 216-233(2017).
DOI: 10.1016/j.engfailanal.2017.06.050
Google Scholar
[4]
R.S. Motta, H.L.D. Cabral, S.M.B Afonso et al., Comparative studies for failure pressure prediction of corroded pipelines. Eng Fail Anal. 81, 178-192(2017).
DOI: 10.1016/j.engfailanal.2017.07.010
Google Scholar
[5]
Y. Chen, X. Li, Y. Chai et al., Assessment of the flexural capacity of corroded steel pipes. Int J Press Vessel Pip. 87 (2), 100-110(2009).
Google Scholar
[6]
K.J. Yeom , Y.K. Lee , K.H. Oh et al., Integrity assessment of a corroded API X70 pipe with a single defect by burst pressure analysis. Eng Fail Anal. 57, 553-561(2015).
DOI: 10.1016/j.engfailanal.2015.07.024
Google Scholar
[7]
H. Ghaednia, S. Das, R. Wang et al., Safe burst strength of a pipeline with dent-crack defect: effect of crack depth and operating pressure. Eng Fail Anal. 55, 288-299(2015).
DOI: 10.1016/j.engfailanal.2015.06.005
Google Scholar
[8]
Z. Wang, M. Long, X. Li et al., Analysis of interaction between interior and exterior wall corrosion defects. J Mar Sci Eng. 11(3), 502-521(2023).
Google Scholar
[9]
X. Zhu, B.N Leis, Theoretical and numerical predictions of burst pressure of pipelines. J PRESS VESS. 129 (4), 644-652(2007).
DOI: 10.1115/1.2767352
Google Scholar
[10]
X. Tian, H. Zhang, Failure pressure of medium and high strength pipelines with scratched dent defects. Eng Fail Anal. 78, 29-40(2017).
DOI: 10.1016/j.engfailanal.2017.03.010
Google Scholar
[11]
C.I. Ossai, B. Boswell, I.J. Davies, Pipeline failures in corrosive environments-A conceptual analysis of trends and effects. Eng Fail Anal. 53, 36-58(2015).
DOI: 10.1016/j.engfailanal.2015.03.004
Google Scholar
[12]
X. Li, Y. Bai, C. Su et al., Effect of interaction between corrosion defects on failure pressure of thin wall steel pipeline. Int J Pres Ves Pip. 138, 8-18(2016).
DOI: 10.1016/j.ijpvp.2016.01.002
Google Scholar
[13]
J. Gao, P. Yang, X. Li et al., Analytical prediction of failure pressure for pipeline with long corrosion defect. Ocean Eng. 191, 106497 (2019).
DOI: 10.1016/j.oceaneng.2019.106497
Google Scholar
[14]
D.H. Oh , J. Race , S. Oterkus et al., A new methodology for the prediction of burst pressure for API 5L X grade flawless pipelines. Ocean Eng. 212,107602(2020).
DOI: 10.1016/j.oceaneng.2020.107602
Google Scholar
[15]
BC. Sérgio, A.N. Theodoro, Analytical solution for stress, strain and plastic instability of pressurized pipes with volumetric flaws. Int J Pres Ves Pip. 89, 187-202(2011).
DOI: 10.1016/j.ijpvp.2011.11.002
Google Scholar
[16]
C.K. Oh, Y.J. Kim, J.H. Baek et al., Ductile failure analysis of API X65 pipes with notch-type defects using a local fracture criterion. Int J Pres Ves Pip. 84 (8), 512-525(2007).
DOI: 10.1016/j.ijpvp.2007.03.002
Google Scholar
[17]
M. Staat, Local and global collapse pressure of longitudinally flawed pipes and cylindrical vessels. Int J Pres Ves Pip. 82 (3), 217-225(2004).
DOI: 10.1016/j.ijpvp.2004.07.022
Google Scholar
[18]
G. Hojjat, S. Shahram, S. Mohamad, A new approach for prediction of the remaining strength of pipeline with external defects. Eng Fail Anal. 130,105754(2021).
Google Scholar
[19]
Y. Shuai, X. Zhang, C. Feng et al., A novel model for prediction of burst capacity of corroded pipelines subjected to combined loads of bending moment and axial compression. Int J Pres Ves Pip. 196, 104621(2022).
DOI: 10.1016/j.ijpvp.2022.104621
Google Scholar
[20]
M. Sun, H. Fang, Y. Miao et al., Experimental study on strain and failure location of interacting defects in pipeline. Eng Fail Anal. 148, 107119(2023).
DOI: 10.1016/j.engfailanal.2023.107119
Google Scholar
[21]
R. Zhou, X. Gu, S. Bi et al., Finite element analysis of the failure of high-strength steel pipelines containing group corrosion defects. Eng Fail Anal. 136, 106203 (2022).
DOI: 10.1016/j.engfailanal.2022.106203
Google Scholar
[22]
H. Wu, H. Zhao, X. Li et al., Elastic-plastic buckling of pipes with asymmetric double corrosion defects subject to external pressure. Ocean Eng. 240, 109975 (2021).
DOI: 10.1016/j.oceaneng.2021.109975
Google Scholar
[23]
Y. Chen, S. Dong, Z. Zang et al., Collapse failure and capacity of subsea pipelines with complex corrosion defects. Eng Fail Anal. 123, 105266 (2021).
DOI: 10.1016/j.engfailanal.2021.105266
Google Scholar
[24]
Z. Wang, W. Duan, M. Long et al., Research on Failure Pressure of API 5L X100 Pipeline with Single Defect. Recent Innovations in Chemical Engineering. 17 (2), 134-155(2024).
DOI: 10.2174/0124055204294716240306065810
Google Scholar
[25]
X. Zhu, B.N. Leis, Evaluation of burst pressure prediction models for line pipes. Int J Pres Ves Pip. 89, 85-97(2011).
Google Scholar
[26]
B.C. Mondal, A.S. Dhar, Burst pressure assessment of corroded pipelines using fracture mechanics criterion. Eng Fail Anal. 104, 139-153(2019).
DOI: 10.1016/j.engfailanal.2019.05.033
Google Scholar
[27]
M.S.G. Chiodo, C. Ruggieri, Failure assessments of corroded pipelines with axial defects using stress-based criteria: numerical studies and verification analyses. Int J Press Vessel Pip. 86 (2), 164-176(2008).
DOI: 10.1016/j.ijpvp.2008.11.011
Google Scholar
[28]
B.C. Mondal, A.S. Dhar, Interaction of multiple corrosion defects on burst pressure of pipelines. Can J Civ Eng. 44 (8), 589-597(2015).
DOI: 10.1139/cjce-2016-0602
Google Scholar
[29]
G. Qin, Y. Cheng, Modeling of mechano-electrochemical interaction at a corrosion defect on a suspended gas pipeline and the failure pressure prediction. Thin Wall Struct. 160, 107404 (2021).
DOI: 10.1016/j.tws.2020.107404
Google Scholar
[30]
J. Wang, Y. Shuai, C. Feng et al., Multi-dimensional mechanical response of multiple longitudinally aligned dents on pipelines and its effect on pipe integrity. Thin Wall Struct. 166, 108020 (2021).
DOI: 10.1016/j.tws.2021.108020
Google Scholar
[31]
H. Adib, S. Jallouf, C. Schmit et al., Evaluation of the effect of corrosion defects on the structural integrity of X52 gas pipelines using the SINTAP procedure and notch theory. Int J Press Ves Pip. 84 (3), 123-131(2006).
DOI: 10.1016/j.ijpvp.2006.10.005
Google Scholar
[32]
M. Allouti, C. Schmitt, G. Pluvinage et al., Study of the influence of dent depth on the critical pressure of pipeline. Eng Fail Anal. 21 (1), 40-51(2012).
DOI: 10.1016/j.engfailanal.2011.11.011
Google Scholar
[33]
Y. Chen, H. Zhang, J. Zhang et al., Residual bending capacity for pipelines with corrosion defects. J LOSS PREVENT PROC. 32, 70-77(2014).
Google Scholar
[34]
Z. Liang, Y. Xiao, J. Zhang, Stress-Strain Analysis of a Pipeline With Inner and Outer Corrosion Defects. J PRESS VESS. 140 (6), 4041434 (2018).
Google Scholar
[35]
Z. Chen, S.Yan, H. Ye et al., Effect of the Y/T on the burst pressure for corroded pipelines with high strength. J Petrol Sci Eng. 157,760-766(2017).
Google Scholar