[1]
F. Bibi, M.I. Khan, A. Rahim, N. Muhammad, L.S.S. Santos: Flexible Supercapacitors Based on Fiber-Shape Electrodes, in: Flexible Supercapacitor Nanoarchitectonics, Wiley, 2021: p.27–42.
DOI: 10.1002/9781119711469.ch2
Google Scholar
[2]
S. Karthikeyan, B. Narenthiran, A. Sivanantham, L.D. Bhatlu, T. Maridurai: Supercapacitor: Evolution and review, in: Mater Today Proc, Elsevier Ltd, 2020: p.3984–3988.
DOI: 10.1016/j.matpr.2021.02.526
Google Scholar
[3]
S.Reenu, L. Phor, A. Kumar, S. Chahal: Electrode materials for supercapacitors: A comprehensive review of advancements and performance, J Energy Storage 84 (2024).
DOI: 10.1016/j.est.2024.110698
Google Scholar
[4]
N. He, W. Shan, J. Wang, Q. Pan, J. Qu, G. Wang, W. Gao: Mordant inspired wet-spinning of graphene fibers for high performance flexible supercapacitors, J Mater Chem A Mater 7 (2019) 6869–6876.
DOI: 10.1039/c8ta12337c
Google Scholar
[5]
D. Jiang, J. Zhang, C. Li, W. Yang, J. Liu: A simple and large-scale method to prepare flexible hollow graphene fibers for a high-performance all-solid fiber supercapacitor, New Journal of Chemistry 41 (2017) 11792–11799.
DOI: 10.1039/c7nj02042b
Google Scholar
[6]
R. Hummers, W. S.; Offeman, E: Preparation of Graphitic Oxide, J Am Chem Soc 208 (1957) 1937.
Google Scholar
[7]
D.C. Marcano, D. V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, J.M. Tour: Improved synthesis of graphene oxide, ACS Nano 4 (2010) 4806–4814.
DOI: 10.1021/nn1006368
Google Scholar
[8]
S. Kamila, M. Kandasamy: The role of iodine in the enhancement of the supercapacitance properties of HI-treated flexible reduced graphene oxide film: an experimental study, Pubs.Rsc. Org (n.d.). (2020)
DOI: 10.1039/c9nj04676c
Google Scholar
[9]
S.R.E. Mohamed, A.S.A. Mohammed, O.I. Metwalli, S. El-Sayed, G. Khabiri, A. Hassan, K. Yin, S.O. Abdellatif, N. López-Salas, A.S.G. Khalil: Synergistic design of high-performance symmetric supercapacitor based on iron oxide nanoplatelets/COOH-MWCNTs heterostructures: DFT computation and experimental analysis, J Alloys Compd 987 (2024).
DOI: 10.1016/j.jallcom.2024.174118
Google Scholar
[10]
X. Zhao, B. Zheng, T. Huang, C. Gao: Graphene-based single fiber supercapacitor with a coaxial structure, Nanoscale 7 (2015) 9399–9404.
DOI: 10.1039/c5nr01737h
Google Scholar
[11]
M. Kigozi, R.K. Koech, O. Kingsley, I. Ojeaga, E. Tebandeke, G.N. Kasozi, A.P. Onwualu: Synthesis and characterization of graphene oxide from locally mined graphite flakes and its supercapacitor applications, Results in Materials 7 (2020) 100113.
DOI: 10.1016/j.rinma.2020.100113
Google Scholar
[12]
N.M.S. Hidayah, W.W. Liu, C.W. Lai, N.Z. Noriman, C.S. Khe, U. Hashim, H.C. Lee: Comparison on graphite, graphene oxide and reduced graphene oxide: Synthesis and characterization, AIP Conf Proc 1892 (2017).
DOI: 10.1063/1.5005764
Google Scholar
[13]
N. He, W. Shan, J. Wang, Q. Pan: Mordant inspired wet spinning of graphene fibers for high performance flexible supercapacitors, J. of materials Pubs.Rsc. Org (n.d.). (2019)
DOI: 10.1039/c8ta12337c
Google Scholar
[14]
W.O. Makinde, M.A. Hassan, Y. Pan, G. Guan, N. López-Salas, A.S.G. Khalil: Sulfur and nitrogen co-doping of peanut shell-derived biochar for sustainable supercapacitor applications, J Alloys Compd 991 (2024).
DOI: 10.1016/j.jallcom.2024.174452
Google Scholar