[1]
A. Z. Al Shaqsi, K. Sopian, and A. Al-Hinai, "Review of energy storage services, applications, limitations, and benefits," Energy Rep., vol. 6, pp.288-306, 2020/12/01/, 2020.
DOI: 10.1016/j.egyr.2020.07.028
Google Scholar
[2]
D. Choi, N. Shamim, A. Crawford, Q. Huang, C. K. Vartanian, V. V. Viswanathan, M. D. Paiss, M. J. E. Alam, D. M. Reed, and V. L. Sprenkle, "Li-ion battery technology for grid application," J. Power Sources, vol. 511, p.230419, 2021.
DOI: 10.1016/j.jpowsour.2021.230419
Google Scholar
[3]
A. Casimir, H. Zhang, O. Ogoke, J. C. Amine, J. Lu, and G. Wu, "Silicon-based anodes for lithium-ion batteries: Effectiveness of materials synthesis and electrode preparation," Nano Energy, vol. 27, pp.359-376, 2016.
DOI: 10.1016/j.nanoen.2016.07.023
Google Scholar
[4]
M. S. Al Ja'farawy, D. N. Hikmah, U. Riyadi, A. Purwanto, and H. Widiyandari, "A Review: The Development of SiO2/C Anode Materials for Lithium-Ion Batteries," J. Electron. Mater., vol. 50, no. 12, pp.6667-6687, 2021.
DOI: 10.1007/s11664-021-09187-x
Google Scholar
[5]
T. Chen, J. Wu, Q. Zhang, and X. Su, "Recent advancement of SiOx based anodes for lithium-ion batteries," J. Power Sources, vol. 363, pp.126-144, 2017/09/30/, 2017.
DOI: 10.1016/j.jpowsour.2017.07.073
Google Scholar
[6]
M. Jiao, Y. Wang, C. Ye, C. Wang, W. Zhang, and C. Liang, "High-capacity SiO (0≤x≤2) as promising anode materials for next-generation lithium-ion batteries," J. Alloys Compd., vol. 842, p.155774, 2020.
DOI: 10.1016/j.jallcom.2020.155774
Google Scholar
[7]
Y. Chen, H. Liu, B. Jiang, Y. Zhao, X. Meng, and T. Ma, "Hierarchical porous architectures derived from low-cost biomass equisetum arvense as a promising anode material for lithium-ion batteries," J. Mol. Struct., vol. 1221, p.128794, 2020.
DOI: 10.1016/j.molstruc.2020.128794
Google Scholar
[8]
Y. Ren, and M. Li, "Facile synthesis of SiOx@C composite nanorods as anodes for lithium ion batteries with excellent electrochemical performance," J. Power Sources, vol. 306, pp.459-466, 2016/02/29/, 2016.
DOI: 10.1016/j.jpowsour.2015.12.064
Google Scholar
[9]
M. Broadley, P. Brown, I. Cakmak, J. F. Ma, Z. Rengel, and F. Zhao, "Beneficial Elements," Marschner's Mineral Nutrition of Higher Plants, pp.249-269, 2012.
DOI: 10.1016/b978-0-12-384905-2.00008-x
Google Scholar
[10]
I. Kovalenko, B. Zdyrko, A. Magasinski, B. Hertzberg, Z. Milicev, R. Burtovyy, I. Luzinov, and G. Yushin, "A Major Constituent of Brown Algae for Use in High-Capacity Li-Ion Batteries," Science, vol. 334, no. 6052, pp.75-79, 2011/10/07, 2011.
DOI: 10.1126/science.1209150
Google Scholar
[11]
Z. Gao, Y. Zhang, N. Song, and X. Li, "Biomass-derived renewable carbon materials for electrochemical energy storage," Mater. Res. Lett., vol. 5, no. 2, pp.69-88, 2017/03/04, 2017.
DOI: 10.1080/21663831.2016.1250834
Google Scholar
[12]
Y. Ju, J. A. Tang, K. Zhu, Y. Meng, C. Wang, G. Chen, Y. Wei, and Y. Gao, "SiOx/C composite from rice husks as an anode material for lithium-ion batteries," Electrochim. Acta, vol. 191, pp.411-416, 2016.
DOI: 10.1016/j.electacta.2016.01.095
Google Scholar
[13]
W. Chen, H. Liu, S. Kuang, H. Huang, T. Tang, M. Zheng, Y. Fang, and X. Yu, "In-situ low-temperature strategy from waste sugarcane leaves towards micro/meso-porous carbon network embedded nano Si-SiOx@C boosting high performances for lithium-ion batteries," Carbon, vol. 179, pp.377-386, 2021.
DOI: 10.1016/j.carbon.2021.04.043
Google Scholar
[14]
H. Xu, S. Zhang, W. He, X. Zhang, G. Yang, J. Zhang, X. Shi, and L. Wang, "SiO2–carbon nanocomposite anodes with a 3D interconnected network and porous structure from bamboo leaves," RSC Adv., vol. 6, no. 3, pp.1930-1937, 2016.
DOI: 10.1039/c5ra19961a
Google Scholar
[15]
M. Janyszek-Sołtysiak, M. Grzelak, P. Gajewski, A. Jagodziński, E. Gaweł, and D. Wronska-Pilarek, "Mineral Contents in Aboveground Biomass of Sedges (Carex L., Cyperaceae)," Energies, vol. 14, p.8007, 11/30, 2021.
DOI: 10.3390/en14238007
Google Scholar
[16]
B. Prakoso, Y. Ma, R. Stephanie, N. H. Hawari, V. Suendo, H. Judawisastra, Y. Zong, Z. Liu, and A. Sumboja, "Facile synthesis of battery waste-derived graphene for transparent and conductive film application by an electrochemical exfoliation method," RSC Adv., vol. 10, no. 17, pp.10322-10328, 2020.
DOI: 10.1039/d0ra01100b
Google Scholar
[17]
Z. Li, H. Zhao, J. Wang, T. Zhang, B. Fu, Z. Zhang, and X. Tao, "Rational structure design to realize high-performance SiOx@C anode material for lithium ion batteries," Nano Res., vol. 13, no. 2, pp.527-532, 2020.
DOI: 10.1007/s12274-020-2644-9
Google Scholar
[18]
J. Song, S. Guo, L. Kou, K. Kajiyoshi, J. Su, W. Huang, Y. Li, and P. Zheng, "Controllable synthesis Honeycomb‐like structure SiOx/C composites as anode for high-performance lithium-ion batteries," Vacuum, vol. 186, p.110044, 2021.
DOI: 10.1016/j.vacuum.2021.110044
Google Scholar
[19]
I. Yakub, M. Mohammad, and Z. Yaakob, "Effects of Zinc Chloride Impregnation on the Characteristics of Activated Carbon Produced from Physic Nut Seed Hull," Adv. Mater. Res., vol. 626, pp.751-755, 2012.
DOI: 10.4028/www.scientific.net/amr.626.751
Google Scholar
[20]
X. Du, W. Zhao, S. Ma, M. Ma, T. Qi, Y. Wang, and C. Hua, "Effect of ZnCl2 impregnation concentration on the microstructure and electrical performance of ramie-based activated carbon hollow fiber," Ionics, vol. 22, no. 4, pp.545-553, 2015.
DOI: 10.1007/s11581-015-1571-3
Google Scholar
[21]
B. Li, J. Hu, H. Xiong, and Y. Xiao, "Application and Properties of Microporous Carbons Activated by ZnCl(2): Adsorption Behavior and Activation Mechanism," ACS Omega, vol. 5, no. 16, pp.9398-9407, Apr 28, 2020.
DOI: 10.1021/acsomega.0c00461
Google Scholar
[22]
Q. Aini, Y. Irmawati, J. Karunawan, M. H. R. Pasha, A. Alni, F. Iskandar, and A. Sumboja, "Para Grass-Derived Porous Carbon-Rich SiOx/C as a Stable Anode for Lithium-Ion Batteries," Energy Fuels, 2023/07/24, 2023.
DOI: 10.1021/acs.energyfuels.3c01678
Google Scholar
[23]
Y. Chen, Y. Kang, Y. Zhao, L. Wang, J. Liu, Y. Li, Z. Liang, X. He, X. Li, N. Tavajohi, and B. Li, "A review of lithium-ion battery safety concerns: The issues, strategies, and testing standards," J. Energy Chem., vol. 59, pp.83-99, 2021.
DOI: 10.1016/j.jechem.2020.10.017
Google Scholar
[24]
K. W. Schroder, H. Celio, L. J. Webb, and K. J. Stevenson, "Examining Solid Electrolyte Interphase Formation on Crystalline Silicon Electrodes: Influence of Electrochemical Preparation and Ambient Exposure Conditions," J. Phys. Chem. C, vol. 116, no. 37, pp.19737-19747, 2012/09/20, 2012.
DOI: 10.1021/jp307372m
Google Scholar
[25]
K. W. Schroder, A. G. Dylla, S. J. Harris, L. J. Webb, and K. J. Stevenson, "Role of Surface Oxides in the Formation of Solid–Electrolyte Interphases at Silicon Electrodes for Lithium-Ion Batteries," ACS Appl Mater Interfaces, vol. 6, no. 23, pp.21510-21524, 2014/12/10, 2014.
DOI: 10.1021/am506517j
Google Scholar
[26]
X. Gao, Y. Gao, Q. Li, Y. Wang, D. Zhao, G. Xu, Z. Zhong, and F. Su, "Scalable synthesis of high-performance anode material SiOx/C for lithium-ion batteries by employing the Rochow reaction process," J. Alloys Compd., vol. 902, p.163668, 2022.
DOI: 10.1016/j.jallcom.2022.163668
Google Scholar