Investigation of the Impact of Groove Angle on the Fatigue Life of Grooved Brake Discs

Article Preview

Abstract:

The purpose of this study is to explore the effect of groove angle on the fatigue life of high-speed train brake discs. A thermal-mechanical coupling model of high-speed train brake discs with different angles (0°, 22.5°, 45°, 67.5°, and 90°) was designed and established. The effects of different groove angles on temperature and stress were studied and analyzed. Experimental specimens were prepared using special processing methods, and friction and wear characteristics experiments were carried out to further verify the simulation results. At the same time, based on the above results, life models of brake discs with different groove angles were established to study the effect of the angle on their fatigue life. Stress has a direct impact on the crack initiation life of groove brake discs, and temperature changes affect the material properties of brake discs, thereby affecting the crack initiation time. The crack growth life of 0° groove brake discs is longer, while the crack growth life of brake discs with other groove angles decreases as the groove angle decreases. Compared with the 0° groove angle, the crack propagation life of the 45° groove angle accounts for approximately 84.7%, while that of the 22.5° groove angle accounts for approximately 80.4%. These research results provide a theoretical basis and numerical research methods for the design of brake disc structures.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

133-148

Citation:

Online since:

October 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Liu, J. Hao, P.L. Kang, Z.H. Sha, F.J. Ma, D.P Yang, S.F. Zhang, Research on dynamic characteristics of compensation mechanism for large-power wind turbine disc brake, Multidiscip. Model. Mater. Struct. 16(3) (2020) 595-605.

DOI: 10.1108/mmms-03-2019-0056

Google Scholar

[2] H.Y. Zhu, S.R. Lian, M.Z. Jin, Y. Wang, S. J. Yang, Q.D. Lu, Z.Y. Tao, Q. Xiao, Review of research on the influence of vibration and thermal fatigue crack of brake disc on rail vehicles, Eng. Fail. Anal. 153 (2023) 107603.

DOI: 10.1016/j.engfailanal.2023.107603

Google Scholar

[3] R.Z. Yang, J. Zeng, Influences of higher order wheel polygon on vibration of wheel-rail system, J. Vib. Shock. 39 (21) (2020) 101–110.

Google Scholar

[4] J. Li, L. Wang, X. Wang, Z. Hu, H. Lan, Z.Y. Wang, J.L. Pang, Y.H. Cheng, Effect of shot peening equivalent impact force on fatigue crack growth behavior and fatigue life prediction of train brake discs, Eng. Fail. Anal. 166(2024) 108914.

DOI: 10.1016/j.engfailanal.2024.108914

Google Scholar

[5] Z. Wang, J. Han, J.P. Domblesky, Z. Li, X. Fan, X. Liu, Crack propagation and microstructural transformation on the friction surface of a high-speed railway brake disc, Wear. 428-429 (2019) 45-54.

DOI: 10.1016/j.wear.2019.01.124

Google Scholar

[6] J.C. Shen, Y. Pan, J.Y. Zuo, Study on thermal fatigue damage mechanisms for high-speed train's wheel-mounted brake disc considering multiaxial stress state, Eng. Fail. Anal. 174 (2025) 109525.

DOI: 10.1016/j.engfailanal.2025.109525

Google Scholar

[7] C. Lu, J. Shen, Q. Fu, J. Mo, Research on radial crack propagation of railway brake disc under emergency braking conditions, Eng. Fail. Anal. 143 (2023) 106877.

DOI: 10.1016/j.engfailanal.2022.106877

Google Scholar

[8] Z. Li, J. Han, Z. Yang, L. Pan, The effect of braking energy on the fatigue crack propagation in railway brake discs, Eng. Fail. Anal. 44 (2014) 272-284.

DOI: 10.1016/j.engfailanal.2014.05.022

Google Scholar

[9] X.D. Xie, Z.Q. Li, J.P. Domblesky, Z.Y. Yang, X.L. Liu, W.J. Li, J.M. Han, Analysis of deep crack formation and propagation in railway brake discs, Eng. Fail. Anal. 128 (2021) 105600.

DOI: 10.1016/j.engfailanal.2021.105600

Google Scholar

[10] L.T. Wang, X. Y. Zhang, L. N. Zhu, J. J. Kang, Z. Q. Fu, D. S. She, R. J. Li, The influence of laser surface texture parameters on the hydrophobic properties of Fe-based amorphous coatings, J. Non-Cryst. Solids. 593 (2022) 121771.

DOI: 10.1016/j.jnoncrysol.2022.121771

Google Scholar

[11] J.H. Cheng, W.G. Chen, D. Y. Li, H.Y. Chen, S.L. Guo, Y.H. Zhou, H.E. Yuan, B.C. Wei. Effect of spherical crown texturing and ionized sulfur infiltration on the tribological performance of piston-cylinder liner, Tribol. Int. 189 (2023) 108969.

DOI: 10.1016/j.triboint.2023.108969

Google Scholar

[12] W. Wu, T.M. Shao, G.M. Chen, Influence of groove surface texture on temperature rise under dry sliding friction, Sci. China Technol. Sci. 59(2) (2016) 183-190.

DOI: 10.1007/s11431-015-5920-2

Google Scholar

[13] H. B. Zou, S. Yan, T. Shen, H.J. Wang, Y.N. Li, J.Y. Chen, Y.Q. Meng, S.C. Men, Z.J. Zhang, T. Y. Sui, B. Lin, Efficiency of surface texturing in the reducing of wear for tests starting with initial point contact, Wear. 482-483 (2021) 203957.

DOI: 10.1016/j.wear.2021.203957

Google Scholar

[14] X.H. Zhan, Y. Peng, Y.C. Liu, P.F. Xiao, X.Y. Zhu, J. Ma, Effects of single-and multi-shape laser-textured surfaces on tribological properties under dry friction, Proc. Inst. Mech. Eng., C J. Mech. Eng. Sci. 234(7) (2020) 1382-1392.

DOI: 10.1177/0954406219892294

Google Scholar

[15] J. Qiao, L.N. Zhu, W. Yue, Z.Q. Fu, J.J. Kang, C.B. Wang, The effect of attributes of micro-shapes of laser surface texture on the wettability of WC-CrCo metal ceramic coatings, Surf. Coat. Technol. 334 (2018) 429-437.

DOI: 10.1016/j.surfcoat.2017.12.001

Google Scholar

[16] L. Song, N. Zhang, Z.H. Yang, X. Li, G. Zhao, T.M. Wang, Q.H. Wang, X.R. Zhang, Tailoring friction interface with surface texture for high-performance ultrasonic motor friction materials, Tribol. Int, 136 (2019) 412-420.

DOI: 10.1016/j.triboint.2019.03.072

Google Scholar

[17] L.J. Yang, Y. Ding, B. Cheng, J.T. He, G.W. Wang, Y. Wang, Investigations on femtosecond laser modified micro-textured surface with anti-friction property on bearing steel GCr15, Appl. Surf. Sci. 434 (2018) 831-842.

DOI: 10.1016/j.apsusc.2017.10.234

Google Scholar

[18] M.X. Shen, C. Yan, J.H. Du, H.X. Li, Y.P. Zou, Y.L. Xiao, Preventing insufficient braking force in wading conditions by strategic use of surface texture on brake discs, Wear. 540 (2024) 205261.

DOI: 10.1016/j.wear.2024.205261

Google Scholar

[19] Q.X. Zhang, J.L. Mo, Z.Y. Xiang, Q. Wang, Z. Yu, C.Z. Zhai, S. Zhu, Effect of surface micro-grooved textures in suppressing stick-slip vibration in high-speed train brake systems, Tribol. Int. 189 (2023) 108946.

DOI: 10.1016/j.triboint.2023.108946

Google Scholar

[20] F. Gao, Y. Sun, J. Yang, R. Fu, Experimental and simulation research on relationships of the pattern of a friction pair and temperature, J. Mech. Eng. 51(19) (2015) 182-188.

Google Scholar

[21] Y.Y. Hu, The Thermo-mechanical coupling finite element analysis for friction pair of spindle brake of wind turbine, Nanchang Univ. (2014).

Google Scholar

[22] X.L. Tan, X.L. Zuo, J. Zhang, W.X. Tang, Y.M. Zhu, Research on convective heat transfer coefficients of brake disc based on FLUENT, J. Jiangsu Univ. Sci. Technol. 30(3) (2016) 254-259+269.

Google Scholar

[23] Z.H. Sha, P.L. Kang, J. Yin, Y. Liu, S.H. Zhang, F.J. Ma, D.P. Yang, Research on braking vibration characteristics of grooved brake interface of disc brake, IOP Conf. Ser.: Mater. Sci. Eng. 692(1) (2019) 012021.

DOI: 10.1088/1757-899x/692/1/012021

Google Scholar

[24] M.X. Shen, H.X. Li, J.H. Du, D.H. Ji, S.P. Liu, Y.L. Xiao, New insights into reducing airborne particle emissions from brake materials: Grooved textures on brake disc surface, Tribol. Int. 174 (2022) 107721.

DOI: 10.1016/j.triboint.2022.107721

Google Scholar

[25] H.T. Li, Z.B. Zhou, S. Liu, L.Y. Wei, J. Zhao, H. Su, Study on Fatigue Performance of 2200 MPa High-Strength Wire of Main Cables Based on FE-SAFE, Coatings. 13 (2023) 646.

DOI: 10.3390/coatings13030646

Google Scholar

[26] X.G. Qu, Research on fatigue damage of steel Q345B used in casting crane at elevated temperature, Lanzhou University of Technology, (2016).

Google Scholar

[27] W.W. Wang, K.X. Ni, H. Ma, Q. Xiong, Z.Y. Wu, H.J. Wang, C.Z. Fan, Fatigue crack propagation simulation of airfoil section blade under aerodynamic and centrifugal loads, Eng. Fract. Mech. 293 (2023) 109702.

DOI: 10.1016/j.engfracmech.2023.109702

Google Scholar

[28] D.J. Kim, C.S. Seok, J.M. Koo, W.T. We, B.C. Goo, J.I. Won, Fatigue life assessment for brake disc of railway vehicle, Fatigue Fract. Eng. Mater. Struct. 33(1) (2010) 37-42.

DOI: 10.1111/j.1460-2695.2009.01412.x

Google Scholar

[29] K. Huang, J.W. Li, H. Cao, H.I. Taier, Fatigue life prediction of vehicle transmission shaft assembly without intermediate support, Appl. Mech. Mater. 246-247 (2013) 108-112.

DOI: 10.4028/www.scientific.net/amm.246-247.108

Google Scholar