[1]
Y. Liu, J. Hao, P.L. Kang, Z.H. Sha, F.J. Ma, D.P Yang, S.F. Zhang, Research on dynamic characteristics of compensation mechanism for large-power wind turbine disc brake, Multidiscip. Model. Mater. Struct. 16(3) (2020) 595-605.
DOI: 10.1108/mmms-03-2019-0056
Google Scholar
[2]
H.Y. Zhu, S.R. Lian, M.Z. Jin, Y. Wang, S. J. Yang, Q.D. Lu, Z.Y. Tao, Q. Xiao, Review of research on the influence of vibration and thermal fatigue crack of brake disc on rail vehicles, Eng. Fail. Anal. 153 (2023) 107603.
DOI: 10.1016/j.engfailanal.2023.107603
Google Scholar
[3]
R.Z. Yang, J. Zeng, Influences of higher order wheel polygon on vibration of wheel-rail system, J. Vib. Shock. 39 (21) (2020) 101–110.
Google Scholar
[4]
J. Li, L. Wang, X. Wang, Z. Hu, H. Lan, Z.Y. Wang, J.L. Pang, Y.H. Cheng, Effect of shot peening equivalent impact force on fatigue crack growth behavior and fatigue life prediction of train brake discs, Eng. Fail. Anal. 166(2024) 108914.
DOI: 10.1016/j.engfailanal.2024.108914
Google Scholar
[5]
Z. Wang, J. Han, J.P. Domblesky, Z. Li, X. Fan, X. Liu, Crack propagation and microstructural transformation on the friction surface of a high-speed railway brake disc, Wear. 428-429 (2019) 45-54.
DOI: 10.1016/j.wear.2019.01.124
Google Scholar
[6]
J.C. Shen, Y. Pan, J.Y. Zuo, Study on thermal fatigue damage mechanisms for high-speed train's wheel-mounted brake disc considering multiaxial stress state, Eng. Fail. Anal. 174 (2025) 109525.
DOI: 10.1016/j.engfailanal.2025.109525
Google Scholar
[7]
C. Lu, J. Shen, Q. Fu, J. Mo, Research on radial crack propagation of railway brake disc under emergency braking conditions, Eng. Fail. Anal. 143 (2023) 106877.
DOI: 10.1016/j.engfailanal.2022.106877
Google Scholar
[8]
Z. Li, J. Han, Z. Yang, L. Pan, The effect of braking energy on the fatigue crack propagation in railway brake discs, Eng. Fail. Anal. 44 (2014) 272-284.
DOI: 10.1016/j.engfailanal.2014.05.022
Google Scholar
[9]
X.D. Xie, Z.Q. Li, J.P. Domblesky, Z.Y. Yang, X.L. Liu, W.J. Li, J.M. Han, Analysis of deep crack formation and propagation in railway brake discs, Eng. Fail. Anal. 128 (2021) 105600.
DOI: 10.1016/j.engfailanal.2021.105600
Google Scholar
[10]
L.T. Wang, X. Y. Zhang, L. N. Zhu, J. J. Kang, Z. Q. Fu, D. S. She, R. J. Li, The influence of laser surface texture parameters on the hydrophobic properties of Fe-based amorphous coatings, J. Non-Cryst. Solids. 593 (2022) 121771.
DOI: 10.1016/j.jnoncrysol.2022.121771
Google Scholar
[11]
J.H. Cheng, W.G. Chen, D. Y. Li, H.Y. Chen, S.L. Guo, Y.H. Zhou, H.E. Yuan, B.C. Wei. Effect of spherical crown texturing and ionized sulfur infiltration on the tribological performance of piston-cylinder liner, Tribol. Int. 189 (2023) 108969.
DOI: 10.1016/j.triboint.2023.108969
Google Scholar
[12]
W. Wu, T.M. Shao, G.M. Chen, Influence of groove surface texture on temperature rise under dry sliding friction, Sci. China Technol. Sci. 59(2) (2016) 183-190.
DOI: 10.1007/s11431-015-5920-2
Google Scholar
[13]
H. B. Zou, S. Yan, T. Shen, H.J. Wang, Y.N. Li, J.Y. Chen, Y.Q. Meng, S.C. Men, Z.J. Zhang, T. Y. Sui, B. Lin, Efficiency of surface texturing in the reducing of wear for tests starting with initial point contact, Wear. 482-483 (2021) 203957.
DOI: 10.1016/j.wear.2021.203957
Google Scholar
[14]
X.H. Zhan, Y. Peng, Y.C. Liu, P.F. Xiao, X.Y. Zhu, J. Ma, Effects of single-and multi-shape laser-textured surfaces on tribological properties under dry friction, Proc. Inst. Mech. Eng., C J. Mech. Eng. Sci. 234(7) (2020) 1382-1392.
DOI: 10.1177/0954406219892294
Google Scholar
[15]
J. Qiao, L.N. Zhu, W. Yue, Z.Q. Fu, J.J. Kang, C.B. Wang, The effect of attributes of micro-shapes of laser surface texture on the wettability of WC-CrCo metal ceramic coatings, Surf. Coat. Technol. 334 (2018) 429-437.
DOI: 10.1016/j.surfcoat.2017.12.001
Google Scholar
[16]
L. Song, N. Zhang, Z.H. Yang, X. Li, G. Zhao, T.M. Wang, Q.H. Wang, X.R. Zhang, Tailoring friction interface with surface texture for high-performance ultrasonic motor friction materials, Tribol. Int, 136 (2019) 412-420.
DOI: 10.1016/j.triboint.2019.03.072
Google Scholar
[17]
L.J. Yang, Y. Ding, B. Cheng, J.T. He, G.W. Wang, Y. Wang, Investigations on femtosecond laser modified micro-textured surface with anti-friction property on bearing steel GCr15, Appl. Surf. Sci. 434 (2018) 831-842.
DOI: 10.1016/j.apsusc.2017.10.234
Google Scholar
[18]
M.X. Shen, C. Yan, J.H. Du, H.X. Li, Y.P. Zou, Y.L. Xiao, Preventing insufficient braking force in wading conditions by strategic use of surface texture on brake discs, Wear. 540 (2024) 205261.
DOI: 10.1016/j.wear.2024.205261
Google Scholar
[19]
Q.X. Zhang, J.L. Mo, Z.Y. Xiang, Q. Wang, Z. Yu, C.Z. Zhai, S. Zhu, Effect of surface micro-grooved textures in suppressing stick-slip vibration in high-speed train brake systems, Tribol. Int. 189 (2023) 108946.
DOI: 10.1016/j.triboint.2023.108946
Google Scholar
[20]
F. Gao, Y. Sun, J. Yang, R. Fu, Experimental and simulation research on relationships of the pattern of a friction pair and temperature, J. Mech. Eng. 51(19) (2015) 182-188.
Google Scholar
[21]
Y.Y. Hu, The Thermo-mechanical coupling finite element analysis for friction pair of spindle brake of wind turbine, Nanchang Univ. (2014).
Google Scholar
[22]
X.L. Tan, X.L. Zuo, J. Zhang, W.X. Tang, Y.M. Zhu, Research on convective heat transfer coefficients of brake disc based on FLUENT, J. Jiangsu Univ. Sci. Technol. 30(3) (2016) 254-259+269.
Google Scholar
[23]
Z.H. Sha, P.L. Kang, J. Yin, Y. Liu, S.H. Zhang, F.J. Ma, D.P. Yang, Research on braking vibration characteristics of grooved brake interface of disc brake, IOP Conf. Ser.: Mater. Sci. Eng. 692(1) (2019) 012021.
DOI: 10.1088/1757-899x/692/1/012021
Google Scholar
[24]
M.X. Shen, H.X. Li, J.H. Du, D.H. Ji, S.P. Liu, Y.L. Xiao, New insights into reducing airborne particle emissions from brake materials: Grooved textures on brake disc surface, Tribol. Int. 174 (2022) 107721.
DOI: 10.1016/j.triboint.2022.107721
Google Scholar
[25]
H.T. Li, Z.B. Zhou, S. Liu, L.Y. Wei, J. Zhao, H. Su, Study on Fatigue Performance of 2200 MPa High-Strength Wire of Main Cables Based on FE-SAFE, Coatings. 13 (2023) 646.
DOI: 10.3390/coatings13030646
Google Scholar
[26]
X.G. Qu, Research on fatigue damage of steel Q345B used in casting crane at elevated temperature, Lanzhou University of Technology, (2016).
Google Scholar
[27]
W.W. Wang, K.X. Ni, H. Ma, Q. Xiong, Z.Y. Wu, H.J. Wang, C.Z. Fan, Fatigue crack propagation simulation of airfoil section blade under aerodynamic and centrifugal loads, Eng. Fract. Mech. 293 (2023) 109702.
DOI: 10.1016/j.engfracmech.2023.109702
Google Scholar
[28]
D.J. Kim, C.S. Seok, J.M. Koo, W.T. We, B.C. Goo, J.I. Won, Fatigue life assessment for brake disc of railway vehicle, Fatigue Fract. Eng. Mater. Struct. 33(1) (2010) 37-42.
DOI: 10.1111/j.1460-2695.2009.01412.x
Google Scholar
[29]
K. Huang, J.W. Li, H. Cao, H.I. Taier, Fatigue life prediction of vehicle transmission shaft assembly without intermediate support, Appl. Mech. Mater. 246-247 (2013) 108-112.
DOI: 10.4028/www.scientific.net/amm.246-247.108
Google Scholar