[1]
Zhang JY, Chen GF, Fu YY, Fan Y, Sun F., Strengthening strain-transformable β Ti-alloy via multi-phase nanostructuration, Journal of Alloys and Compounds 799 (2019) 389-397.
DOI: 10.1016/j.jallcom.2019.05.352
Google Scholar
[2]
Warchomicka, Fernando, C. Poletti, and Martin Stockinger, Study of the hot deformation behaviour in Ti–5Al–5Mo–5V–3Cr–1Zr, Materials Science and Engineering: A 528.28 (2011) 8277-8285.
DOI: 10.1016/j.msea.2011.07.068
Google Scholar
[3]
Devaraj, A., Joshi, V. V., Srivastava, A., Manandhar, S., Moxson, V., Duz, V. A., & Lavender, C., A low-cost hierarchical nanostructured beta-titanium alloy with high strength, Nature communications 7.1 (2016) 1-8.
DOI: 10.1038/ncomms11176
Google Scholar
[4]
Wadood A, Inamura T, Yamabe-Mitarai Y, Hosoda H., Effect of uniform distribution of α phase on mechanical, shape memory and pseudoelastic properties of Ti–6Cr–3Sn alloy, Materials Science and Engineering A 555 (2012) 28-35.
DOI: 10.1016/j.msea.2012.06.029
Google Scholar
[5]
Chang H, Gautier E, Zhou L. Phase transformation kinetics in metastable titanium alloys, Chinese science bulletin 59 (2014) 1773-1777.
DOI: 10.1007/s11434-014-0210-0
Google Scholar
[6]
Oosthuizen, S. J., In search of low cost titanium: the Fray Farthing Chen (FFC) Cambridge process, Journal of the Southern African Institute of Mining and Metallurgy 111.3 (2011) 199-202.
Google Scholar
[7]
Dikovits M, Poletti C, Warchomicka F., Deformation mechanisms in the near-β titanium alloy Ti-55531, Metallurgical and Materials Transactions A 45 (2014) 1586-1596.
DOI: 10.1007/s11661-013-2073-4
Google Scholar
[8]
Kang L., & Yang C., A review on high‐strength titanium alloys: microstructure, strengthening, and properties, Advanced Engineering Materials 21(8) (2019) 1801359.
DOI: 10.1002/adem.201801359
Google Scholar
[9]
Bolzoni, Leandro, Elisa María Ruiz-Navas, and Elena Gordo, Quantifying the properties of low-cost powder metallurgy titanium alloys, Materials Science and Engineering: A 687 (2017) 47-53.
DOI: 10.1016/j.msea.2017.01.049
Google Scholar
[10]
Zhu C., Peng G., Lin Y.C., Zhang X.Y., Liu C. and Zhou K., Effects of Mo and Cr contents on microstructures and mechanical properties of near β-Ti alloy, Materials Science and Engineering: A 825, 2021 141882.
DOI: 10.1016/j.msea.2021.141882
Google Scholar
[11]
S.J. Gerdemann, Titanium process technologies, Adv. Mater. Processes 159 (2001) 41–43.
Google Scholar
[12]
Auwal S. T., Ramesh S., Yusof F., & Manladan S. M., A review on laser beam welding of titanium alloys, The international Journal of advanced manufacturing technology 97.1 (2018) 1071-1098.
DOI: 10.1007/s00170-018-2030-x
Google Scholar
[13]
Shinde G., Gajghate S., Dabeer P. S. & Seemikeri C. Y., Low cost friction stir welding: A review, Materials Today: Proceedings 4.8 (2017) 8901-8910.
DOI: 10.1016/j.matpr.2017.07.241
Google Scholar
[14]
R.I. Jaffee, I.E. Campbell, The effect of oxygen, nitrogen and hydrogen on iodide refined titanium, Transactions of the American Institute of Mining and Metallurgical Engineers, 185 (1949) 646–654.
DOI: 10.1007/bf03398910
Google Scholar
[15]
R.I. Jaffee, H.R. Ogden, D.J. Maykuth, Alloys of titanium with carbon, oxygen and nitrogen, Transactions of the American Institute of Mining and Metallurgical Engineers, 188 (1950) 1261–1266.
DOI: 10.1007/bf03399142
Google Scholar
[16]
Gunawarman B., Niinomi M., Akahori T., Souma T., Ikeda M. & Toda H., Mechanical properties and microstructures of low cost β titanium alloys for healthcare applications, Materials Science and Engineering: C 25.3 (2005) 304-311.
DOI: 10.1016/j.msec.2004.12.015
Google Scholar
[17]
Mendez Patricio F., and Thomas W. Eagar., Welding processes for aeronautics, Advanced materials and processes 159.5 (2001) 39-43.
Google Scholar
[18]
Oke S.R., Ogunwande G.S., Onifade M., Aikulola E., Adewale E.D., Olawale O.E., Ayodele B.E., Mwema F., Obiko J. and Bodunrin M.O., An overview of conventional and non-conventional techniques for machining of titanium alloys, Manufacturing Review 7(2020) 34.
DOI: 10.1051/mfreview/2020029
Google Scholar
[19]
Akhonin S.V., Belous V.Y., Selin R.V. & Berezos V.A., Structure and Properties of High-Strength Titanium Alloy Ti-6.5 Al-3Mo-2.5 V-4Nb-1Cr-1Fe-2.5 Zr Welded Joints, Solid State Phenomena Vol. 313 (2021) 82-93.
DOI: 10.4028/www.scientific.net/ssp.313.82
Google Scholar
[20]
Akhonin S.V., Belous V.Y., Berezos V.A & Selin R.V., Effect of TIG-welding on the structure and mechanical properties of the pseudo-β titanium alloy VT19 welded joints, Materials Science Forum Vol. 927 (2018) 112-118.
DOI: 10.4028/www.scientific.net/msf.927.112
Google Scholar
[21]
Akhonin S. V., Belous V.Y., Selin R.V. & Kostin V.A., Influence of TIG Welding Thermal Cycle on Temperature Distribution and Phase Transformation in Low-cost Titanium Alloy, IOP Conference Series: Earth and Environmental Science Vol. 688. No. 1 (2021) 012012
DOI: 10.1088/1755-1315/688/1/012012
Google Scholar