Electrochemical Performance of Hydrothermal Synthesized Fe3O4/ReS2 Heterostructure for Supercapacitor Electrodes

Article Preview

Abstract:

Developing materials for electrodes with engineered interfaces is important for improving supercapacitor performance. Combining metal oxides and two-dimensional (2D) transition-metal dichalcogenides (TMDs) is a promising approach to develop enhanced supercapacitor electrodes. To the best of our knowledge, the electrochemical activity and energy storage of the Fe3O4/ReS2 heterostructure-based electrodes have not been reported in the literature. Therefore, this study employed a two-step hydrothermal method to synthesize a Fe3O4/ReS2 heterostructure and investigated its electrochemical performance. The developed material exhibited exceptional specific capacitance, capacity retention, and high energy and power densities. Moreover, various characterization techniques, including SEM, TEM combined with EDX, and XRD, were employed to examine the surface and structural properties of the produced heterostructures. Electrochemical measurements for supercapacitor application were conducted in 2 M KOH electrolytes for all the developed electrodes. The Fe3O4/ReS2 electrode displayed an excellent energy density of 49.31 Wh/Kg, a power density of 550 W/Kg, a specific capacitance of 322.7 F/g, at a current density of 1A/g, and attained 118 % capacitance retention after 2000 cycles at 10 A/g. A specific capacitance of 789.65 F/g was obtained at 5 mV/s. This work uncovers the potential of Fe3O4/ReS2 heterostructures as promising electrode materials for high-performance energy storage applications.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

157-163

Citation:

Online since:

October 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S.R.E. Mohamed, M.R.R. Abdul-Aziz, S. Saber, G. Khabiri, and A.S.G. Khalil: Journal of Alloys and Compounds Vol. 957 (2023), p.170281

DOI: 10.1016/j.jallcom.2023.170281

Google Scholar

[2] W. Zhao, J. Pan, Y. Fang, X. Che, D. Wang, K. Bu, and F. Huang: Chemistry - A European Journal Vol. 24 (2018), p.15942

Google Scholar

[3] J. Woods, A. Mahvi, A. Goyal, E. Kozubal, A. Odukomaiya, and R. Jackson: Nature Energy Vol. 6 (2021), p.295

DOI: 10.1038/s41560-021-00778-w

Google Scholar

[4] W. Liu, M. Ulaganathan, I. Abdelwahab, X. Luo, Z. Chen, S.J. Rong Tan, X. Wang, Y. Liu, D. Geng, Y. Bao, J. Chen, and K.P. Loh: ACS Nano Vol. 12 (2018), p.852–860

DOI: 10.1021/acsnano.7b08354

Google Scholar

[5] M. Rahman, K. Davey, and S.Z. Qiao: Advanced Functional Materials Vol. 27 (2017), p.1606129

Google Scholar

[6] E. Frąckowiak, M. Foroutan Koudahi, M. Tobis, M.E. Tobis Frąckowiak, M. Foroutan Koudahi, M. Tobis, M.E. Tobis Frąckowiak, M. Foroutan Koudahi, and M. Tobis: Small Vol. 17 (2021), p.1–10.

DOI: 10.1002/smll.202006821

Google Scholar

[7] N. Tang, and W. Tu: Journal of Magnetism and Magnetic Materials Vol. 321 (2009), p.3311.

Google Scholar

[8] W.O. Makinde, M.A. Hassan, Y. Pan, G. Guan, N. López-Salas, and A.S.G. Khalil: Journal of Alloys and Compounds Vol. 991 (2024), p.174452

DOI: 10.1016/j.jallcom.2024.174452

Google Scholar

[9] H. Gao, H.H. Yue, F. Qi, B. Yu, W.L. Zhang, and Y.F. Chen: Rare Metals Vol. 37 (2018), p.1014

Google Scholar

[10] G. Xu, L. Li, Z. Shen, Z. Tao, Y. Zhang, H. Tian, X. Wei, G. Shen, and G. Han: Journal of Alloys and Compounds Vol. 629 (2015), p.36

Google Scholar

[11] S. Manoj, H.K. Sadhanala, I. Perelshtein, and A. Gedanken: ACS Applied Materials and Interfaces Vol. 14 (2022), p.18570

DOI: 10.1021/acsami.2c02457

Google Scholar

[12] Z. Lai, S. Rong, S. Huang, M. Qin, J. Huang, X. Zhang, Z. Zhang, and J. Liu: Surfaces and Interfaces Vol. 42 (2023), p.103494

Google Scholar