Redesign of Low-Activation Vanadium Alloys Based on Impurity Control for Fusion Reactor Applications

Article Preview

Abstract:

Vanadium alloys are highly promising as structural materials of fusion reactor blanket, owing to their excellent high-temperature strength, and good compatibility with liquid metal lithium, which functions as both a coolant and a fuel tritium breeder material. Chemical composition of V-4Cr-4Ti has been selected as the primary candidate after systematic investigations into its neutron irradiation properties. Since V and Cr do not produce long-lived radioactive isotopes emitting high-energy gamma rays even under intense neutron irradiation conditions, low-activation characteristics are primarily governed by Ti and detrimental high-activation impurities, such as Co, Cu, Fe, Mo, Nb, and Ni. Very early material recycling, such as remote recycling within ten years, and re-use even in the same fusion reactor is achievable through effective impurity removal and minimization of Ti concentration. This paper discusses the progress in and mechanisms of vanadium metal refining. Additionally, the present paper reviews recent results and current status of redesign efforts for the Cr and Ti concentration balance to identify a new high-Cr and low-Ti composition, maintaining various attractive properties of the V-4Cr-4Ti alloy.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

21-34

Citation:

Online since:

January 2026

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2026 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H.M. Chung, B.A. Loomis, D.L. Smith, Development and testing of vanadium alloys for fusion applications, J. Nucl. Mater. 239 (1996) 139-156.

DOI: 10.1016/s0022-3115(96)00676-9

Google Scholar

[2] T. Nagasaka, T. Tanaka, M. Kobayashi, K.-i. Fukumoto, T. Toyama, T. Sugawara, R. Kasada, Y. Yamauchi, K. Katayama, M. Oya, K. Yabuuchi, S. Sakurai, K. Nomura, H. Yoshinaga, Ten-Year Recycling of Vanadium Alloy in Fusion Reactors, Mater. Sci. Forum 1106 (2023) 117–126.

DOI: 10.4028/p-nmm22p

Google Scholar

[3] T. Nagasaka, T. Muroga, Vanadium for Nuclear Systems, in: Rudy J.M. Konings, R.E. Stoller (Eds.), Comprehensive Nuclear Materials - Second Edition, Elsevier, 2020, pp.1-18.

DOI: 10.1016/b978-0-12-803581-8.00730-x

Google Scholar

[4] R.E. Gold and R. Bajaj, Mechanical properties of candidate vanadium alloys for fusion applications, J. Nucl. Mater. 122&123 (1984) 759-766.

DOI: 10.1016/0022-3115(84)90695-0

Google Scholar

[5] B.A. Loomis, R.H. Lee, D.L. Smith, J.R. Peterson, Strength. Ductility, and ductile-brittle transition temperature for MFR candidate vanadium alloys, J. Nucl. Mater. 155-157 (1988) 631-638.

DOI: 10.1016/0022-3115(88)90386-8

Google Scholar

[6] T. Nagasaka, T. Muroga, Y.C. Wu, Z.G. Xu, M. Imamura, Low Activation Characteristics of Several Heats of V-4Cr-4Ti Ingot, J. Plasma and Fusion Res. SERIES, 5 (2002) 545-550.

Google Scholar

[7] M. Satou, K. Abe, H. Kayano, High-temperature deformation of modified V-Ti-Cr-Si type alloys, J. Nucl. Mater. 179-181 (1991) 757-761.

DOI: 10.1016/0022-3115(91)90199-h

Google Scholar

[8] T. Matsushima, M. Satou, A. Hasegawa, K. Abe, H. Kayano, Tensile properties of a series of V-4Ti-4Cr alloys containing small amounts of Si, Al and Y, and the influence of helium implantation, J. Nucl. Mater. 258-263 (1998) 1497-1501.

DOI: 10.1016/s0022-3115(98)00212-8

Google Scholar

[9] T. Shibayama, Results of melting in Teledyne Wah Chang (in Japanese), Research meeting "Study on Vanadium Alloy Development for FFHR Structural Materials", May 7, 1998, National Institute for Fusion Science, Toki, Japan.

Google Scholar

[10] M. L. Grossbeck, R.L. Klueh, E.T. Cheng, J.R. Peterson, M.R. Woolery, E.E. Bloom, Analysis of V-Cr-Ti alloys in terms of activation of impurities, J. Nucl. Mater. 258-263 (1998) 1778-1783.

DOI: 10.1016/s0022-3115(98)00228-1

Google Scholar

[11] W.R. Johnson, J.P. Smith, Fabrication of a 1200 kg ingot of V-4Cr-4Ti alloy for the DIII-D radiative divertor program, J. Nucl. Mater. 258-263 (1998) 1425-1430.

DOI: 10.1016/s0022-3115(98)00209-8

Google Scholar

[12] M.M. Potapenko, V.M. Chernov, V.A. Drobyshev, Large heats V-4Cr-4Ti alloys and items for fusion power reactors, 14th International Conference om Fusion Reactor Materials (ICFRM-14), Sep. 6-11, 2009, Sapporo, Japan.

Google Scholar

[13] V. Duquesnes, T. Guilbert, M. Le Flem, French investigation of a new V-4Cr-4Ti grade: CEA-J57 -Fabrication and microstructure, J. Nucl. Mater. 426 (2012) 96-101.

DOI: 10.1016/j.jnucmat.2012.03.029

Google Scholar

[14] H.Y. Fu, J.M. Chen, P.F. Zheng, T. Nagasaka, T. Muroga, Z.D. Li, S. Cui, Z.Y. Xu, Fabrication using electron beam melting of a V-4Cr-4Ti alloy and its thermo-mechanical strengthening study, J. Nucl. Mater. 442 (2013) S336-S340.

DOI: 10.1016/j.jnucmat.2013.01.337

Google Scholar

[15] T. Nagasaka, S, Sakurai, K. Nomura, H. Yoshinaga, Effects of chromium and titanium on hardness and tensile strength of vanadium alloys, to be published.

Google Scholar

[16] W.G. Pfann, Zone Melting, 2nd edition, John Wiley & Sons, 1966.

Google Scholar

[17] R.W. Schrage, A theoretical study of interphase mass transfer, Columbia University Press, New York, 1953.

Google Scholar

[18] K. Narita, Thermodynamic and Kinetic Aspects of Vacuum Refining of Liquid Steel (in Japanese), Tetsu-to-Hagane 57 (1971) 2253-2272.

DOI: 10.2355/tetsutohagane1955.57.14_2253

Google Scholar

[19] J. Chipman (Ed.), Basic Open Hearth Steelmaking, Am. Inst. Min. Metall. Eng., 1951, New York.

Google Scholar

[20] Desk Handbook Phase Diagrams for Binary Alloys, H. Okamura (Ed.), Materials Park, Ohio, ASM International, 2010.

Google Scholar

[21] Phase diagrams of binary vanadium alloys, J.F. Smith (Ed.), Materials Park, Oho, ASM International, 1989.

Google Scholar

[22] Iron-binary phase diagrams, O. Kubaschewski (Ed.), Springer-Verlag Berlin Heidelberg, 1982.

Google Scholar

[23] K. Ishida, Database of phase diagrams of steels, Basics and applications of phase diagram (in Japanese), 1987, Japan Inst. Met.

Google Scholar

[24] J.J. Shen, T. Nagasaka, M. Tokitani, T. Muroga, R. Kasada, S. Sakurai, Effects of titanium concentration on microstructure and mechanical properties of high-purity vanadium alloys, Mater. Des. 224 (2022) 111390.

DOI: 10.1016/j.matdes.2022.111390

Google Scholar

[25] J.J. Shen, Influences of minor Ti addition on microstructure and tensile properties of high-purity V-10Cr alloys, Mater. Sci. Eng. A 915 (2024) 147263.

DOI: 10.1016/j.msea.2024.147263

Google Scholar

[26] K.-i. Fukumoto, Y. Kitamura, S. Miura, K. Fujita, R. Ishigami, T. Nagasaka, Irradiation Hardening Behavior of He-Irradiated V–Cr–Ti Alloys with Low Ti Addition, Quantum Beam Sci. 5 (2021) 1.

DOI: 10.3390/qubs5010001

Google Scholar

[27] K.-i. Fukumoto, S. Miura, Y. Kitamura., R. Ishigami, T. Nagasaka. Correlation between Microstructural Change and Irradiation Hardening Behavior of He-Irradiated V–Cr–Ti Alloys with Low Ti Addition, Quantum Beam Sci. 5 (2021) 26.

DOI: 10.3390/qubs5030026

Google Scholar

[28] Y.C. Zou, Ken.-i. Fukumoto, R. Ishigami, T. Nagasaka, Microstructural changes in He-irradiated V-Cr-Ti alloys with low Ti addition at 700 °C, Nucl. Mater. Energy 38 (2024) 101605.

DOI: 10.1016/j.nme.2024.101605

Google Scholar

[29] K. Fukumoto, K. Tone, T. Onitsuka, T. Ishigami, Effect of Ti addition on microstructural evolution of V–Cr–Ti alloys to balance irradiation hardening with swelling suppression, Nucl. Mater. Energy 15 (2018) 122–127.

DOI: 10.1016/j.nme.2018.03.008

Google Scholar

[30] B.A. Pint, S.J. Pawel, M. Howell, J.L. Moser, G.W. Garner, M.L. Santella, P.F. Tortorelli, F.W. Wiffen, J.R. DiStefano, Initial characterization of V–4Cr–4Ti and MHD coatings exposed to flowing Li, J. Nucl. Mater. 386–388 (2009) 712-715.

DOI: 10.1016/j.jnucmat.2008.12.295

Google Scholar

[31] O.I. Eliseeva, V.N. Fedirko, V.M. Chernov, L.P. Zavialsky, Corrosion of V–Ti–Cr alloys in liquid lithium: influence of alloy composition and concentration of nitrogen in lithium, J. Nucl. Mater. 283–287 (2000) 1282-1286.

DOI: 10.1016/s0022-3115(00)00121-5

Google Scholar

[32] S. Katayama, K. Katayama, Y. Mori, R. Arakawa, T. Nagasaka, Corrosion behavior of vanadium alloys with different chromium and titanium concentrations in static liquid lithium, to be published.

Google Scholar

[33] T. Tanaka, T. Muroga, A. Sagara, Tritium Self-sufficiency and neutron shielding performance of self-cooled liquid blanket system for helical reactor, Fusion Sci. Technol. 47 (2005) 530-534.

DOI: 10.13182/fst05-a738

Google Scholar

[34] V. Tsisar, T. Nagasaka, O. Yeliseyeva, J. Lim, J. Konys, T. Muroga, C. Schroer, Corrosion behavior and mechanical properties of V-4Cr-4Ti alloy exposed at 500 and 700 °C to static Pb with ∼10-9mass% dissolved oxygen for 1000 h, J. Nucl. Mater. 595 (2024) 155052.

DOI: 10.1016/j.jnucmat.2024.155052

Google Scholar

[35] A. Yoshizawa, Y. Yamauchi, T. Nagasaka, S. Tomioka, Y. Matsumoto, N. Higashi, Deuterium permeation of low-activation vanadium alloys possible for reuse in a short time in fusion reactors, Fusion Eng. Des. 202 (2024) 114410.

DOI: 10.1016/j.fusengdes.2024.114410

Google Scholar

[36] Y. Yamauchi, Y. Tanoue, K. Keta, T. Nagasaka, J.J. Shen, S. Tomioka, Y. Matsumoto, Deuterium and helium desorption/retention properties of low-activation vanadium alloys possible for reuse in a short time in fusion reactors, Nucl. Mater. Energy 39 (2024) 101655.

DOI: 10.1016/j.nme.2024.101655

Google Scholar