[1]
E. Nes, "The effect of a fine particle dispersion on heterogeneous recrystallization," Acta Metallurgica, vol. 24, p.391–398, 1976.
DOI: 10.1016/0001-6160(76)90059-6
Google Scholar
[2]
O. Engler, T. Brüggemann, and J. Hasenclever, "Evolution of micro‑chemistry during solidification and homogenisation of AA3xxx aluminium–manganese alloys," Materials Science and Technology, vol. 37, no. 10, p.893–908, 2021.
DOI: 10.1080/02670836.2021.1963540
Google Scholar
[3]
Olaf Engler, Simon Miller-Jupp, Control of second-phase particles in the Al-Mg-Mn alloy AA 5083, Journal of Alloys and Compounds, Volume 689, 2016, Pages 998-1010, ISSN 0925-8388.
DOI: 10.1016/j.jallcom.2016.08.070
Google Scholar
[4]
O. Engler, L. Löchte, and J. Hirsch, "Through‑process simulation of texture and properties during the thermomechanical processing of aluminium sheets," Acta Materialia, vol. 55, p.5449–5463, 2007.
DOI: 10.1016/j.actamat.2007.06.010
Google Scholar
[5]
D. Raabe, D. Ponge, P. J. Uggowitzer, and S. Pogatscher, "Making sustainable aluminum by recycling scrap: The science of 'dirty' alloys," Progress in Materials Science, vol. 128, art. 100947, 2022.
DOI: 10.1016/j.pmatsci.2022.100947
Google Scholar
[6]
J. D. Robson and P. B. Prangnell, "Dispersoid precipitation and process modelling in zirconium containing commercial aluminium alloys," Acta Materialia, vol. 49, p.599–613, 2001.
DOI: 10.1016/s1359-6454(00)00351-7
Google Scholar
[7]
P. I. Sarafoglou, A. Serafeim, I. A. Fanikos, J. S. Aristeidakis, and G. N. Haidemenopoulos, "Modeling of microsegregation and homogenization of 6xxx Al‑alloys including precipitation and strengthening during homogenization cooling," Materials, vol. 12, no. 9, p.1421, 2019.
DOI: 10.3390/ma12091421
Google Scholar
[8]
J. S. Aristeidakis et al., "Microstructural evolution in a 6060 extrudable Al‑alloy: Integrated modeling and experimental validation," Materials, vol. 17, no. 3, p.545, 2024.
DOI: 10.3390/ma17030545
Google Scholar
[9]
Z. Liu, V. Mohles, O. Engler, and G. Gottstein, "Thermodynamics based modelling of the precipitation kinetics in commercial aluminium alloys," Computational Materials Science, vol. 81, p.410–417, Jan. 2014.
DOI: 10.1016/j.commatsci.2013.08.049
Google Scholar
[10]
Z. Liu, V. Mohles, O. Engler, and G. Gottstein, "Statistical model of precipitation kinetics for recycled commercial aluminium alloys," in Supplemental Proceedings: Volume 2—Materials Fabrication, Properties, Characterization, and Modeling, TMS, 2011, p.449–456.
DOI: 10.1002/9781118062142.ch54
Google Scholar
[11]
T. Yu, A. Hope, and P. Mason, "Implementing numerical algorithms to optimize the parameters in Kampmann–Wagner Numerical (KWN) precipitation models," npj Computational Materials, vol. 10, art. 235, 2024.
DOI: 10.1038/s41524-024-01415-2
Google Scholar
[12]
E. Kozeschnik, J. Svoboda, P. Fratzl, and F. D. Fischer, "Modelling of kinetics in multicomponent multi‑phase systems with spherical precipitates II: Numerical solution and application," Materials Science and Engineering A, vol. 385, no. 1–2, p.157–165, 2004.
DOI: 10.1016/j.msea.2004.06.016
Google Scholar
[13]
E. Cinkilic, X. Yan, and A. A. Luo, "Modeling precipitation hardening and yield strength in cast Al–Si–Mg–Mn alloys," Metals, vol. 10, art. 1356, 2020.
DOI: 10.3390/met10101356
Google Scholar
[14]
O. R. Myhr, C. D. Marioara, and O. Engler, "Modeling the effect of excess vacancies on precipitation and mechanical properties of Al–Mg–Si alloys," Metallurgical and Materials Transactions A, vol. 55, p.291–302, 2024.
DOI: 10.1007/s11661-023-07249-9
Google Scholar
[15]
Q. Du, W. J. Poole, and M. A. Wells, "A mathematical model coupled to CALPHAD to predict precipitation kinetics for multicomponent aluminum alloys," Acta Materialia, vol. 60, p.3830–3839, 2012.
DOI: 10.1016/j.actamat.2012.02.050
Google Scholar
[16]
N. Khan, M. J. Starink, and J. L. Yan, "A model for precipitation kinetics and strengthening in Al–Cu–Mg alloys," Materials Science and Engineering A, vol. 472, p.66–74, 2008.
DOI: 10.1016/j.msea.2007.03.033
Google Scholar
[17]
M. Nicolas and A. Deschamps, "Characterisation and modelling of precipitate evolution in an Al–Zn–Mg alloy during non‑isothermal heat treatments," Acta Materialia, vol. 51, p.6077–6094, 2003.
DOI: 10.1016/S1359-6454(03)00429-4
Google Scholar
[18]
A.Deschamps and Y. Brechet, "Influence of predeformation and ageing of an Al-Zn-Mg alloy- II. Modeling of precipitation kinetics and yield stress," Acta Materialia, vol. 47, pp.293-305, 1998.
DOI: 10.1016/S1359-6454(98)00296-1
Google Scholar
[19]
Q. Chen, J. Jeppsson, and J. Ågren, "Analytical treatment of diffusion during precipitate growth in multicomponent systems," Acta Materialia, vol. 56, p.1890–1896, 2008.
DOI: 10.1016/j.actamat.2007.12.037
Google Scholar
[20]
S. N. Samaras, "Modelling of microstructure evolution during precipitation processes: A population balance approach of the KWN model," Modelling and Simulation in Materials Science and Engineering, vol. 14, p.1271–1292, 2006.
DOI: 10.1088/0965-0393/14/8/001
Google Scholar
[21]
J. D. Robson, "A new model for prediction of dispersoid precipitation in aluminium alloys containing zirconium and scandium," Acta Materialia, 52(6), 1409–1421, 2004.
DOI: 10.1016/j.actamat.2003.11.023
Google Scholar