Atomistic Investigation of Stability and Segregation of Alphagenic and Betagenic Solutes in Hexagonal Titanium

Article Preview

Abstract:

This research work focuses on the atomic study of hexagonal titanium (Ti) in order to estimate the relative accuracy of DFT (Density Functional Theory) and Molecular Statics (MS) approaches to better understand the interactions between solute atoms and twins. Four twins (2 tensile twins and 2 compressive twins) were modeled and then doped with the following elements: hydrogen, oxygen, nitrogen, aluminum and vanadium (H, O, N, Al, V). The formation energies of the twins as well as the segregation energies of the solute atoms were calculated to better predict the concentration heterogeneities of these elements in the material and their possible influence on local mechanical properties.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

43-49

Citation:

Online since:

January 2026

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2026 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Zarkades, F.R Larson, The science, Technology and Application of Titanium, Pergamon Press, Oxford, UK, (1970) 933

Google Scholar

[2] M. Besse, P. Castany, T. Gloriant, Acta Materialia 59 (2011) 5982-5988

Google Scholar

[3] M. Niinomi, Materials Science Engineering A243 (1998) 231-236

Google Scholar

[4] F. Bridier, P. Villechaise, J. Mendez, Acta Materialia 56 (2008) 3951-3962

Google Scholar

[5] P. Castany, F. Pettinari-Sturmel, J. Crestou, J. Douin, A. Coujou, Acta Materialia 55 (2007) 6284-6291

DOI: 10.1016/j.actamat.2007.07.032

Google Scholar

[6] B. Revil-Baudard, , PhD thesis, Ecole nationale supérieure des mines de Paris (2010)

Google Scholar

[7] M. Arul Kumar, M. Wroński, R.J. McCabe, L. Capolungo, L, K. Wierzbanowski, & C.N. Tomé, Acta Materialia 147 (2018) 291–303.

DOI: 10.1016/j.actamat.2018.01.041

Google Scholar

[8] A. Poloni (2020),. PhD Thesis, Université de la Rochelle, France.

Google Scholar

[9] M. Peters, J. Hemptenmacher, J. Kumpfert, & C. Leyens C. Titanium and Titanium Alloys (2005) 1–36.

DOI: 10.1002/3527602119.ch1

Google Scholar

[10] G. Kresse and J. Hafner, Phys. Rev. B 47, (1993) 558; ibid. 49, 14 (1994) 251.

Google Scholar

[11] G. Kresse and J. Furthmüller, Comput. Mat. Sci. 6, (1996) 15.

Google Scholar

[12] G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11 (1996) 169.

Google Scholar

[13] G. Kresse and D. Joubert, Phys. Rev. 59, (1999) 1758.

Google Scholar

[14] Plimpton, S., Journal of Computational Physics, 117, 1 (1995) 1–19.

Google Scholar

[15] Guénolé, J et al. Computational Materials Science 175 (2020): 109584.

Google Scholar

[16] M.I. Mendelev, T.L. Underwood, and G.J. Ackland, The Journal of Chemical Physics, 145 (15) (2016) 154102.

Google Scholar

[17] Y.-M. Kim, B.-J. Lee, and M.I. Baskes, Phys. Rev. B 74, 1 (2006) 014101.

Google Scholar

[18] X.W. Zhou, R.A. Johnson, and H.N.G. Wadley, Phys. Rev. B 69, 14 (2004), 144113.

Google Scholar

[19] G.J. Ackland, Philosophical Magazine A, 66(6) (1992) 917-932.

Google Scholar

[20] Rajendra R. Zope, Y. Mishin, Phys. Rev. B 68, (2003) 024102.

Google Scholar

[21] M. Daw, M.I. Baskes, American Physical Society (1984) 6443–6453.

Google Scholar

[22] M.I. Baskes, M.I., Phys. Rev. B 46(5) (1992) 2727.

Google Scholar

[23] Warwick, Jonnathan LW. Diss. Imperial College London, 2014.

Google Scholar

[24] A. Stukowski, Modelling and simulation in materials science and engineering, 18 (2009) 1 015012

Google Scholar

[25] Jun Hui et al.  Materials & design 213 (2022): 110331.

Google Scholar

[26] H.H. Wu, D.G. Trinkle, Phys. Rev. Lett. 107 (2011) 045504.

Google Scholar

[27] Ackland and Jones, Phys. Rev. B 73, (2006) 054104.

Google Scholar

[28] Liang, Liang, and Olivier BM Hardouin Duparc. Acta Materialia 110 (2016): 258-267.

Google Scholar