[1]
Cottrell AH. Dislocations and plastic flow in crystals. Oxford: Oxford University Press; 1953.
Google Scholar
[2]
Kocks, U.F., Mecking, H. Physics and phenomenology of strain hardening: the FCC case. Prog. Mater. Sci. 48 (2003) 171-273.
DOI: 10.1016/s0079-6425(02)00003-8
Google Scholar
[3]
Taylor, G.I. The mechanism of plastic deformation of crystals. Part I.—Theoretical. Proc. Roy. Soc. A, 145 (1934) 362-387.
Google Scholar
[4]
Wilsdorf, H., Kuhlmann-Wilsdorf, D. Direct evidence for dislocations in aluminium-copper alloys. Lond. Edinb. Dubl. Phil. Mag. 45 (1954) 1096-1097.
DOI: 10.1080/14786441008520533
Google Scholar
[5]
Hirsch, P.B., Horne, R.W., Whelan, M.J. Direct observations of the arrangement and motion of dislocations in aluminium. Phil. Mag. 86 (1956) 677-684.
DOI: 10.1080/14786435608244003
Google Scholar
[6]
Kuhlmann-Wilsdorf, D. Theory of plastic deformation:-properties of low energy dislocation structures. Mater. Sci. Eng. A. 113 (1989) 1-41.
DOI: 10.1016/0921-5093(89)90290-6
Google Scholar
[7]
Zaiser, M., Miguel, M.C. Groma, I. Statistical dynamics of dislocation systems: The influence of dislocation-dislocation correlations. Phys. Rev. B, 64 (2001) 224102.
DOI: 10.1103/physrevb.64.224102
Google Scholar
[8]
Yefimov, S., Groma, I., Van der Giessen, E. A comparison of a statistical-mechanics based plasticity model with discrete dislocation plasticity calculations. J. Mech. Phys. Sol. 52 (2004) 279-300.
DOI: 10.1016/s0022-5096(03)00094-2
Google Scholar
[9]
Ananthakrishna, G. Current theoretical approaches to collective behavior of dislocations. Phys. Rep. 440 (2007) 113-259.
DOI: 10.1016/j.physrep.2006.10.003
Google Scholar
[10]
Hochrainer, T. Multipole expansion of continuum dislocations dynamics in terms of alignment tensors. Phil. Mag. 95 (2015) 1321-1367.
DOI: 10.1080/14786435.2015.1026297
Google Scholar
[11]
Ispánovity, P.D., Laurson, L., Zaiser, M., Groma, I., Zapperi, S. Alava, M.J. Avalanches in 2d dislocation systems: Plastic yielding is not depinning. Phys. Rev Lett. 112 (2014) 235501.
DOI: 10.1103/physrevlett.112.235501
Google Scholar
[12]
Zhang, Y., Wu, R. Zaiser, M. Continuum dislocation dynamics as a phase field theory with conserved order parameters: formulation and application to dislocation patterning. Mod. Sim. Mater. Sci. Eng. 33 (2025) 035011.
DOI: 10.1088/1361-651x/adc31f
Google Scholar
[13]
Saada, G. Sur le durcissement dû à la recombinaison des dislocations. Acta Metall. 8 (1960) 841-847.
DOI: 10.1016/0001-6160(60)90150-4
Google Scholar
[14]
Schoeck, G., Frydman, R. The contribution of the dislocation forest to the flow stress. Phys. Stat. Sol. B. 53 (1972) 661-673.
DOI: 10.1002/pssb.2220530227
Google Scholar
[15]
Dupuy, L., Fivel, M.C. A study of dislocation junctions in FCC metals by an orientation dependent line tension model. Acta Mater. 50 (2002) 4873-4885.
DOI: 10.1016/s1359-6454(02)00356-7
Google Scholar
[16]
Kocks, U.F. A statistical theory of flow stress and work-hardening. Phil. Mag. A. 13 (1966) 541-566.
DOI: 10.1080/14786436608212647
Google Scholar
[17]
Hernández Olivares, F., Gil Sevillano, J. A quantitative assessment of forest-hardening in FCC metals. Acta Metall. 35 (1987) 631-641.
DOI: 10.1016/0001-6160(87)90186-6
Google Scholar
[18]
Gil Sevillano, J., Bouchaud, E., Kubin, L. P. The fractal nature of gliding dislocation lines. Scripta Metall. Mater. 25 (1991) 355-360.
DOI: 10.1016/0956-716x(91)90192-4
Google Scholar
[19]
Devincre, B., Hoc, T., Kubin, L. Dislocation mean free paths and strain hardening of crystals. Science, 320 (2008) 1745-1748.
DOI: 10.1126/science.1156101
Google Scholar
[20]
Lu, S., Kan, Q., Zaiser, M., Li, Z., Kang, G., Zhang, X. Size-dependent yield stress in ultrafine-grained polycrystals: A multiscale discrete dislocation dynamics study. Int. J. Plast. 149 (2022) 103183
DOI: 10.1016/j.ijplas.2021.103183
Google Scholar
[21]
Hansen, N., Huang, X., Microstructure and flow stress of polycrystals and single crystals. Acta Mater. 46 (1998) 1827-1836
DOI: 10.1016/s1359-6454(97)00365-0
Google Scholar
[22]
Gil-Sevillano, J. Flow stress and work hardening. Materials science and technology, Wiley, 2006.
Google Scholar
[23]
Schouwenaars, R. Some basic results in the mathematical analysis of dislocation storage and annihilation in stage II and stage III strain hardening. Phil. Mag. A. 94 (2014) 3120-3136.
DOI: 10.1080/14786435.2014.953619
Google Scholar
[24]
Schouwenaars, R. A statistical analysis of strain hardening: The percolation limit and the Taylor equation. Acta Mater. 60 (2012) 6331-6340.
DOI: 10.1016/j.actamat.2012.08.008
Google Scholar
[25]
Joshi, S.S., Keller, C., Mas, L., Lefebvre, W., Hug, E., Couzinie, J.P. On the origin of the strain hardening mechanisms of Ni20Cr alloy manufactured by laser powder bed fusion. Int. J. Plast. 165 (2023) 103610.
DOI: 10.1016/j.ijplas.2023.103610
Google Scholar
[26]
Essmann, U., Mughrabi, H. Annihilation of dislocations during tensile and cyclic deformation and limits of dislocation densities. Phil. Mag. A. 40 (1979) 731-756.
DOI: 10.1080/01418617908234871
Google Scholar
[27]
Schouwenaars, R. Calculating the grain size effect during strain hardening through a probabilistic analysis of the mean slip distance in polycrystals. Int. J. Plast. 178 (2024) 104012.
DOI: 10.1016/j.ijplas.2024.104012
Google Scholar
[28]
Schouwenaars, R. 2020. Self-energy, line tension and bow-out of grain boundary dislocation sources. Int. J. Plast. 133, 102802
DOI: 10.1016/j.ijplas.2020.102802
Google Scholar
[29]
Schouwenaars, R., Kestens, L.A.I., 2023. Dislocation pileups in small grains. Int. J. Plast. 164, 103602.
DOI: 10.1016/j.ijplas.2023.103602
Google Scholar
[30]
Kubin, L., 2013. Dislocations, mesoscale simulations and plastic flow. Oxford University Press.
Google Scholar