Modelling Combined Hardening Mechanisms in Alloys through the Analysis of Dislocation Percolation

Article Preview

Abstract:

The critical resolved shear strength of pure metals is given by the Peierls-Nabarro equation; impurities or alloying elements will significantly increase . Additional strength is introduced by strain hardening (SH), the grain size effect (GSE), precipitates and particle dispersion. The combination of these mechanisms is generally described in an additive manner, which can be justified by the Taylor expansion of a multivariate function. This approach is highly empirical and involves extensive parameter fitting. The Kocks-Mecking model (KM) and discrete dislocation dynamics show that SH is mainly due to forest effects (latent hardening). Consequently, the main explanation for alloy strength must be sought in the resistance against dislocation percolation through a field of obstacles with different strengths, with the slip length limited by the grain diameter. This hypothesis is explored by reviving early graphical simulations to the percolation problem by introducing a grain boundary and variable obstacle strength in an efficient computer program. Such simulations and theoretical considerations demonstrate the limitations of the additive description of combined hardening. An alternative approximation is proposed, based on the statistical analysis of dislocation percolation, dislocation junctions and dislocation-grain boundary interaction.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

13-19

Citation:

Online since:

January 2026

Funder:

The publication of this article was funded by the Universidad Nacional Autónoma de México 10.13039/501100005739

Export:

Share:

Citation:

* - Corresponding Author

[1] Cottrell AH. Dislocations and plastic flow in crystals. Oxford: Oxford University Press; 1953.

Google Scholar

[2] Kocks, U.F., Mecking, H. Physics and phenomenology of strain hardening: the FCC case. Prog. Mater. Sci. 48 (2003) 171-273.

DOI: 10.1016/s0079-6425(02)00003-8

Google Scholar

[3] Taylor, G.I. The mechanism of plastic deformation of crystals. Part I.—Theoretical.  Proc. Roy. Soc. A, 145 (1934) 362-387.

Google Scholar

[4] Wilsdorf, H., Kuhlmann-Wilsdorf, D. Direct evidence for dislocations in aluminium-copper alloys. Lond. Edinb. Dubl. Phil. Mag. 45 (1954) 1096-1097.

DOI: 10.1080/14786441008520533

Google Scholar

[5] Hirsch, P.B., Horne, R.W., Whelan, M.J. Direct observations of the arrangement and motion of dislocations in aluminium. Phil. Mag. 86 (1956) 677-684.

DOI: 10.1080/14786435608244003

Google Scholar

[6] Kuhlmann-Wilsdorf, D. Theory of plastic deformation:-properties of low energy dislocation structures. Mater. Sci. Eng. A. 113 (1989) 1-41.

DOI: 10.1016/0921-5093(89)90290-6

Google Scholar

[7] Zaiser, M., Miguel, M.C. Groma, I. Statistical dynamics of dislocation systems: The influence of dislocation-dislocation correlations. Phys. Rev. B, 64 (2001) 224102.

DOI: 10.1103/physrevb.64.224102

Google Scholar

[8] Yefimov, S., Groma, I., Van der Giessen, E. A comparison of a statistical-mechanics based plasticity model with discrete dislocation plasticity calculations. J. Mech. Phys. Sol. 52 (2004) 279-300.

DOI: 10.1016/s0022-5096(03)00094-2

Google Scholar

[9] Ananthakrishna, G. Current theoretical approaches to collective behavior of dislocations. Phys. Rep. 440 (2007) 113-259.

DOI: 10.1016/j.physrep.2006.10.003

Google Scholar

[10] Hochrainer, T. Multipole expansion of continuum dislocations dynamics in terms of alignment tensors. Phil. Mag. 95 (2015) 1321-1367.

DOI: 10.1080/14786435.2015.1026297

Google Scholar

[11] Ispánovity, P.D., Laurson, L., Zaiser, M., Groma, I., Zapperi, S. Alava, M.J. Avalanches in 2d dislocation systems: Plastic yielding is not depinning. Phys. Rev Lett. 112 (2014) 235501.

DOI: 10.1103/physrevlett.112.235501

Google Scholar

[12] Zhang, Y., Wu, R. Zaiser, M. Continuum dislocation dynamics as a phase field theory with conserved order parameters: formulation and application to dislocation patterning. Mod. Sim. Mater. Sci. Eng. 33 (2025) 035011.

DOI: 10.1088/1361-651x/adc31f

Google Scholar

[13] Saada, G. Sur le durcissement dû à la recombinaison des dislocations. Acta Metall. 8 (1960) 841-847.

DOI: 10.1016/0001-6160(60)90150-4

Google Scholar

[14] Schoeck, G., Frydman, R. The contribution of the dislocation forest to the flow stress. Phys. Stat. Sol. B. 53 (1972) 661-673.

DOI: 10.1002/pssb.2220530227

Google Scholar

[15] Dupuy, L., Fivel, M.C. A study of dislocation junctions in FCC metals by an orientation dependent line tension model. Acta Mater. 50 (2002) 4873-4885.

DOI: 10.1016/s1359-6454(02)00356-7

Google Scholar

[16] Kocks, U.F. A statistical theory of flow stress and work-hardening. Phil. Mag. A. 13 (1966) 541-566.

DOI: 10.1080/14786436608212647

Google Scholar

[17] Hernández Olivares, F., Gil Sevillano, J. A quantitative assessment of forest-hardening in FCC metals. Acta Metall. 35 (1987) 631-641.

DOI: 10.1016/0001-6160(87)90186-6

Google Scholar

[18] Gil Sevillano, J., Bouchaud, E., Kubin, L. P. The fractal nature of gliding dislocation lines. Scripta Metall. Mater. 25 (1991) 355-360.

DOI: 10.1016/0956-716x(91)90192-4

Google Scholar

[19] Devincre, B., Hoc, T., Kubin, L. Dislocation mean free paths and strain hardening of crystals. Science, 320 (2008) 1745-1748.

DOI: 10.1126/science.1156101

Google Scholar

[20] Lu, S., Kan, Q., Zaiser, M., Li, Z., Kang, G., Zhang, X. Size-dependent yield stress in ultrafine-grained polycrystals: A multiscale discrete dislocation dynamics study. Int. J. Plast. 149 (2022) 103183

DOI: 10.1016/j.ijplas.2021.103183

Google Scholar

[21] Hansen, N., Huang, X., Microstructure and flow stress of polycrystals and single crystals. Acta Mater. 46 (1998) 1827-1836

DOI: 10.1016/s1359-6454(97)00365-0

Google Scholar

[22] Gil-Sevillano, J. Flow stress and work hardening. Materials science and technology, Wiley, 2006.

Google Scholar

[23] Schouwenaars, R. Some basic results in the mathematical analysis of dislocation storage and annihilation in stage II and stage III strain hardening. Phil. Mag. A. 94 (2014) 3120-3136.

DOI: 10.1080/14786435.2014.953619

Google Scholar

[24] Schouwenaars, R. A statistical analysis of strain hardening: The percolation limit and the Taylor equation. Acta Mater. 60 (2012) 6331-6340.

DOI: 10.1016/j.actamat.2012.08.008

Google Scholar

[25] Joshi, S.S., Keller, C., Mas, L., Lefebvre, W., Hug, E., Couzinie, J.P. On the origin of the strain hardening mechanisms of Ni20Cr alloy manufactured by laser powder bed fusion. Int. J. Plast. 165 (2023) 103610.

DOI: 10.1016/j.ijplas.2023.103610

Google Scholar

[26] Essmann, U., Mughrabi, H. Annihilation of dislocations during tensile and cyclic deformation and limits of dislocation densities. Phil. Mag. A. 40 (1979) 731-756.

DOI: 10.1080/01418617908234871

Google Scholar

[27] Schouwenaars, R. Calculating the grain size effect during strain hardening through a probabilistic analysis of the mean slip distance in polycrystals. Int. J. Plast. 178 (2024) 104012.

DOI: 10.1016/j.ijplas.2024.104012

Google Scholar

[28] Schouwenaars, R. 2020. Self-energy, line tension and bow-out of grain boundary dislocation sources. Int. J. Plast. 133, 102802

DOI: 10.1016/j.ijplas.2020.102802

Google Scholar

[29] Schouwenaars, R., Kestens, L.A.I., 2023. Dislocation pileups in small grains. Int. J. Plast. 164, 103602.

DOI: 10.1016/j.ijplas.2023.103602

Google Scholar

[30] Kubin, L., 2013. Dislocations, mesoscale simulations and plastic flow. Oxford University Press.

Google Scholar