Thermal and Entropy Analysis of Flow Dynamics in a Constant-Volume Double Lid-Driven Trapezoidal Cavity

Article Preview

Abstract:

The present study explores combined free-forced convective flow and entropy generation in a constant-volume double lid-driven trapezoidal cavity. All configurations of the isosceles trapezoidal cavity were meticulously designed to possess identical leg lengths and constant volume, ensuring that the same amount of heat is transferred from the cavity’s legs. The cavity has left and right lid-driven walls capable of oscillating upward and downward, while all other domain boundaries remain stationary. The left wall is sustained at a consistently high temperature, whereas the right wall is kept at a stable low temperature, and the upper and lower horizontal walls are thermally insulated. The modelling of this problem was carried out based on the finite volume technique. The obtained results were carefully validated against existing literature related to similar problems. The influence of relevant parameters such as Richardson number (0.01 ≤ Ri ≤ 100), aspect ratio (0.4 ≤ AR ≤ 1) and three distinct moving arrangements (Case-A, Case-B and Case-C) were examined. The findings revealed that heat transport was restricted at high Ri for all the presented aspect ratios, especially for Case-C. For all the presented aspect ratios and cases, entropy generation decreases as Ri increases, with the lowest values ​​observed for Case-A. Trapezoidal cavities with AR = 0.4, 0.6, and 0.8 generate lower entropy than the square cavity at high Ri, but higher entropy at low Ri.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

149-174

Citation:

Online since:

February 2026

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2026 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Dawood, H. K., Mohammed, H. A., Sidik, N. A. C., Munisamy, K. M., & Wahid, M. A. (2015). Forced, natural and mixed-convection heat transfer and fluid flow in annulus: A review. International Communications in Heat and Mass Transfer, 62, 45-57.

DOI: 10.1016/j.icheatmasstransfer.2015.01.006

Google Scholar

[2] Das, D., Roy, M., & Basak, T. (2017). Studies on natural convection within enclosures of various (non-square) shapes–A review. International Journal of Heat and Mass Transfer, 106, 356-406.

DOI: 10.1016/j.ijheatmasstransfer.2016.08.034

Google Scholar

[3] Ismael, M. A., Abu-Nada, E., & Chamkha, A. J. (2017). Mixed convection in a square cavity filled with CuO-water nanofluid heated by corner heater. International Journal of Mechanical Sciences, 133, 42-50.

DOI: 10.1016/j.ijmecsci.2017.08.029

Google Scholar

[4] Alhasan, M., Hamzah, H., Tumse, S., Daabo, A. M., & Sahin, B. (2024). Heat transfer and entropy generation in oscillating lid-driven heat sinks with variable fin configurations. International Communications in Heat and Mass Transfer, 159, 108264.

DOI: 10.1016/j.icheatmasstransfer.2024.108264

Google Scholar

[5] Long, T., Zheng, D., Li, Y., Liu, S., Lu, J., Shi, D., & Huang, S. (2022). Experimental study on liquid desiccant regeneration performance of solar still and natural convective regenerators with/without mixed convection effect generated by solar chimney. Energy, 239, 121919.

DOI: 10.1016/j.energy.2021.121919

Google Scholar

[6] Alhasan, M., Hamzah, H., Koprulu, A., & Sahin, B. (2024). Couette-Poiseuille flow over a backward-facing step: Investigating hydrothermal performance and irreversibility analysis. Case Studies in Thermal Engineering, 53, 103954.

DOI: 10.1016/j.csite.2023.103954

Google Scholar

[7] Abdelmaksoud, A., Elbakhshawangy, H. F., & Abd El-Kawi, O. S. (2021). Heat transport and chimney design in a typical MTR reactor during natural convection cooling regime. Progress in Nuclear Energy, 138, 103814.

DOI: 10.1016/j.pnucene.2021.103814

Google Scholar

[8] Keya, S. T., Yeasmin, S., Rahman, M. M., Karim, M. F., & Amin, M. R. (2022). Mixed convection heat transfer in a lid-driven enclosure with a double-pipe heat exchanger. International Journal of thermofluids, 13, 100131.

DOI: 10.1016/j.ijft.2021.100131

Google Scholar

[9] Ghia, U. K. N. G., Ghia, K. N., & Shin, C. T. (1982). High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method. Journal of computational physics, 48(3), 387-411.

DOI: 10.1016/0021-9991(82)90058-4

Google Scholar

[10] Schreiber, R., & Keller, H. B. (1983). Driven cavity flows by efficient numerical techniques. Journal of Computational Physics, 49(2), 310-333.

DOI: 10.1016/0021-9991(83)90129-8

Google Scholar

[11] Al-Amiri, A. M., Khanafer, K. M., & Pop, I. (2007). Numerical simulation of combined thermal and mass transport in a square lid-driven cavity. International journal of thermal sciences, 46(7), 662-671.

DOI: 10.1016/j.ijthermalsci.2006.10.003

Google Scholar

[12] Ji, T. H., Kim, S. Y., & Hyun, J. M. (2007). Transient mixed convection in an enclosure driven by a sliding lid. Heat and mass transfer, 43(7), 629-638.

DOI: 10.1007/s00231-006-0113-y

Google Scholar

[13] Mohamad, A. A., & Viskanta, R. (1996). Flow and heat transfer in a lid-driven cavity filled with a stably stratified fluid. International Journal of Multiphase Flow, 22(S1), 95-95.

DOI: 10.1016/s0301-9322(97)88146-3

Google Scholar

[14] T Basak, T., Roy, S., Sharma, P. K., & Pop, I. (2009). Analysis of mixed convection flows within a square cavity with uniform and non-uniform heating of bottom wall. International Journal of Thermal Sciences, 48(5), 891-912.

DOI: 10.1016/j.ijthermalsci.2008.08.003

Google Scholar

[15] Rajarathinam, M., Nithyadevi, N., & Chamkha, A. J. (2018). Heat transfer enhancement of mixed convection in an inclined porous cavity using Cu-water nanofluid. Advanced Powder Technology, 29(3), 590-605.

DOI: 10.1016/j.apt.2017.11.032

Google Scholar

[16] Alsabery, A. I., Ismael, M. A., Chamkha, A. J., & Hashim, I. (2018). Mixed convection of Al2O3-water nanofluid in a double lid-driven square cavity with a solid inner insert using Buongiorno's two-phase model. International Journal of Heat and Mass Transfer, 119, 939-961.

DOI: 10.1016/j.ijheatmasstransfer.2017.11.136

Google Scholar

[17] Rashad, A. M., Ismael, M. A., Chamkha, A. J., & Mansour, M. A. (2016). MHD mixed convection of localized heat source/sink in a nanofluid-filled lid-driven square cavity with partial slip. Journal of the Taiwan Institute of Chemical Engineers, 68, 173-186.

DOI: 10.1016/j.jtice.2016.08.033

Google Scholar

[18] Çolak, E., Ekici, Ö., & Öztop, H. F. (2021). Mixed convection in a lid-driven cavity with partially heated porous block. International Communications in Heat and Mass Transfer, 126, 105450.

DOI: 10.1016/j.icheatmasstransfer.2021.105450

Google Scholar

[19] Zhang, Y., Lin, H., Chaturvedi, R., Singh, P. K., Mansir, I. B., Zhang, K., & Alhoee, J. (2023). Mixed convection of EG/NEPCM inside a lid-driven cavity with a rotating cylinder. Case Studies in Thermal Engineering, 47, 103072.

DOI: 10.1016/j.csite.2023.103072

Google Scholar

[20] Moayedi, H., Amanifard, N., & Deylami, H. M. (2022). A comparative study of the effect of fin shape on mixed convection heat transfer in a lid-driven square cavity. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 44(8), 322.

DOI: 10.1007/s40430-022-03623-7

Google Scholar

[21] Borbora, M. H., Vasu, B., & Chamkha, A. J. (2023). A review study of numerical simulation of lid-driven cavity flow with nanofluids. Journal of Nanofluids, 12(3), 589-604.

DOI: 10.1166/jon.2023.1930

Google Scholar

[22] Abu-Nada, E., & Chamkha, A. J. (2014). Mixed convection flow of a nanofluid in a lid-driven cavity with a wavy wall. International Communications in Heat and Mass Transfer, 57, 36-47.

DOI: 10.1016/j.icheatmasstransfer.2014.07.013

Google Scholar

[23] Selimefendigil, F., & Öztop, H. F. (2019). MHD mixed convection of nanofluid in a flexible walled inclined lid-driven L-shaped cavity under the effect of internal heat generation. Physica A: Statistical Mechanics and its Applications, 534, 122144.

DOI: 10.1016/j.physa.2019.122144

Google Scholar

[24] Yeasmin, S., Billah, M. M., Molla, M. Z., & Hoque, K. E. (2022). Numerical analysis of unsteady mixed convection heat transfer characteristics of nanofluids confined within a porous lid-driven L-shaped cavity. International Journal of Thermofluids, 16, 100218.

DOI: 10.1016/j.ijft.2022.100218

Google Scholar

[25] Cimpean, D. S., Sheremet, M. A., & Pop, I. (2020). Mixed convection of hybrid nanofluid in a porous trapezoidal chamber. International Communications in Heat and Mass Transfer, 116, 104627.

DOI: 10.1016/j.icheatmasstransfer.2020.104627

Google Scholar

[26] Shuvo, M. S., Hasib, M. H., & Saha, S. (2022). Entropy generation and characteristics of mixed convection in lid-driven trapezoidal tilted enclosure filled with nanofluid. Heliyon, 8(12).

DOI: 10.1016/j.heliyon.2022.e12079

Google Scholar

[27] Hussein, A. A. (2023). Mixed convection heat transfer in trapezoidal lid-driven cavity with uniformly heated inner circular cylinder. Archives of Thermodynamics, 99-118.

DOI: 10.24425/ather.2023.147539

Google Scholar

[28] Chamkha, A. J., & Ismael, M. A. (2016). Magnetic field effect on mixed convection in lid-driven trapezoidal cavities filled with a Cu–water nanofluid with an aiding or opposing side wall. Journal of Thermal Science and Engineering Applications, 8(3), 031009.

DOI: 10.1115/1.4033211

Google Scholar

[29] Hamzah, H., Zontul, H., & Sahin, B. (2025). Exploring Homogeneous and Discrete Models for Predicting Hydrothermal Flow and Entropy Generation. Heat Transfer Engineering, 1-23.

DOI: 10.1080/01457632.2025.2489706

Google Scholar

[30] Nayak, R. K., Bhattacharyya, S., & Pop, I. (2016). Numerical study on mixed convection and entropy generation of a nanofluid in a lid-driven square enclosure. Journal of Heat Transfer, 138(1), 012503.

DOI: 10.1115/1.4031178

Google Scholar

[31] Khorasanizadeh, H., Nikfar, M., & Amani, J. (2013). Entropy generation of Cu–water nanofluid mixed convection in a cavity. European Journal of Mechanics-B/Fluids, 37, 143-152.

DOI: 10.1016/j.euromechflu.2012.09.002

Google Scholar

[32] Mamourian, M., Shirvan, K. M., Ellahi, R., & Rahimi, A. B. (2016). Optimization of mixed convection heat transfer with entropy generation in a wavy surface square lid-driven cavity by means of Taguchi approach. International Journal of Heat and Mass Transfer, 102, 544-554.

DOI: 10.1016/j.ijheatmasstransfer.2016.06.056

Google Scholar

[33] Cho, C. C. (2018). Heat transfer and entropy generation of mixed convection flow in Cu-water nanofluid-filled lid-driven cavity with wavy surface. International Journal of Heat and Mass Transfer, 119, 163-174.

DOI: 10.1016/j.ijheatmasstransfer.2017.11.090

Google Scholar

[34] Hussain, S., Mehmood, K., & Sagheer, M. (2016). MHD mixed convection and entropy generation of water–alumina nanofluid flow in a double lid driven cavity with discrete heating. Journal of Magnetism and Magnetic Materials, 419, 140-155.

DOI: 10.1016/j.jmmm.2016.06.006

Google Scholar

[35] Albensoeder, S., Kuhlmann, H. C., & Rath, H. J. (2001). Multiplicity of steady two-dimensional flows in two-sided lid-driven cavities. Theoretical and Computational Fluid Dynamics, 14(4), 223-241.

DOI: 10.1007/s001620050138

Google Scholar

[36] Azzouz, E. A., & Houat, S. (2025). Bifurcation of antiparallel motion of the flow in a two-sided lid-driven cavity. Physics of Fluids, 37(7).

DOI: 10.1063/5.0271758

Google Scholar

[37] Benzema, M., Benkahla, Y. K., Labsi, N., Ouyahia, S. E., & El Ganaoui, M. (2019). Second law analysis of MHD mixed convection heat transfer in a vented irregular cavity filled with Ag–MgO/water hybrid nanofluid. Journal of Thermal Analysis and Calorimetry, 137(3), 1113-1132.

DOI: 10.1007/s10973-019-08017-x

Google Scholar

[38] Patankar, S. (2018). Numerical heat transfer and fluid flow. CRC press.

Google Scholar

[39] Jasim, L., Alkhabbaz, A., & Hamzah, H. (2023). Preferred location of the porous sleeve in a concentric annulus depending on the thermal insulation. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 237(8), 2002-2013.

DOI: 10.1177/09544062221133940

Google Scholar

[40] Wang, F., Animasaun, I. L., & Muhammad, T. (2025). Anisotropic turbulent flow of water through converging wavy-aluminum-circular pipe with five half-cycles: insight into the significance of four-branch minor-inlet angle. Journal of Non-Equilibrium Thermodynamics, 50 (4), 513-544. https://doi.org/10.1515/jnet-2025-0046 26.

DOI: 10.1515/jnet-2025-0046

Google Scholar

[41] Li, L., Animasaun, I. L., Koriko, O. K., Muhammad, T., & Elnaqeeb, T. (2024). Insight into turbulent Reynolds number at the regular, converging, and diverging outlets: dynamics of air, water, and kerosene through y-shaped cylindrical copper ducts. International Communications in Heat and Mass Transfer, 159, 108044.

DOI: 10.1016/j.icheatmasstransfer.2024.108044

Google Scholar

[42] Animasaun, I. L., Muhammad, T., & Yook, S. J. (2025). Exploration of Half‐Cycle Length of Converging Circular Wavy Duct with Diverging‐Outlet: Turbulent Water Dynamics. Advanced Theory and Simulations, 2500038.

DOI: 10.1002/adts.202500038

Google Scholar

[43] Talebi, F., Mahmoudi, A. H., & Shahi, M. (2010). Numerical study of mixed convection flows in a square lid-driven cavity utilizing nanofluid. International Communications in Heat and Mass Transfer, 37(1), 79-90.

DOI: 10.1016/j.icheatmasstransfer.2009.08.013

Google Scholar

[44] Ilis, G. G., Mobedi, M., & Sunden, B. (2008). Effect of aspect ratio on entropy generation in a rectangular cavity with differentially heated vertical walls. International Communications in Heat and Mass Transfer, 35(6), 696-703.

DOI: 10.1016/j.icheatmasstransfer.2008.02.002

Google Scholar