[1]
Dawood, H. K., Mohammed, H. A., Sidik, N. A. C., Munisamy, K. M., & Wahid, M. A. (2015). Forced, natural and mixed-convection heat transfer and fluid flow in annulus: A review. International Communications in Heat and Mass Transfer, 62, 45-57.
DOI: 10.1016/j.icheatmasstransfer.2015.01.006
Google Scholar
[2]
Das, D., Roy, M., & Basak, T. (2017). Studies on natural convection within enclosures of various (non-square) shapes–A review. International Journal of Heat and Mass Transfer, 106, 356-406.
DOI: 10.1016/j.ijheatmasstransfer.2016.08.034
Google Scholar
[3]
Ismael, M. A., Abu-Nada, E., & Chamkha, A. J. (2017). Mixed convection in a square cavity filled with CuO-water nanofluid heated by corner heater. International Journal of Mechanical Sciences, 133, 42-50.
DOI: 10.1016/j.ijmecsci.2017.08.029
Google Scholar
[4]
Alhasan, M., Hamzah, H., Tumse, S., Daabo, A. M., & Sahin, B. (2024). Heat transfer and entropy generation in oscillating lid-driven heat sinks with variable fin configurations. International Communications in Heat and Mass Transfer, 159, 108264.
DOI: 10.1016/j.icheatmasstransfer.2024.108264
Google Scholar
[5]
Long, T., Zheng, D., Li, Y., Liu, S., Lu, J., Shi, D., & Huang, S. (2022). Experimental study on liquid desiccant regeneration performance of solar still and natural convective regenerators with/without mixed convection effect generated by solar chimney. Energy, 239, 121919.
DOI: 10.1016/j.energy.2021.121919
Google Scholar
[6]
Alhasan, M., Hamzah, H., Koprulu, A., & Sahin, B. (2024). Couette-Poiseuille flow over a backward-facing step: Investigating hydrothermal performance and irreversibility analysis. Case Studies in Thermal Engineering, 53, 103954.
DOI: 10.1016/j.csite.2023.103954
Google Scholar
[7]
Abdelmaksoud, A., Elbakhshawangy, H. F., & Abd El-Kawi, O. S. (2021). Heat transport and chimney design in a typical MTR reactor during natural convection cooling regime. Progress in Nuclear Energy, 138, 103814.
DOI: 10.1016/j.pnucene.2021.103814
Google Scholar
[8]
Keya, S. T., Yeasmin, S., Rahman, M. M., Karim, M. F., & Amin, M. R. (2022). Mixed convection heat transfer in a lid-driven enclosure with a double-pipe heat exchanger. International Journal of thermofluids, 13, 100131.
DOI: 10.1016/j.ijft.2021.100131
Google Scholar
[9]
Ghia, U. K. N. G., Ghia, K. N., & Shin, C. T. (1982). High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method. Journal of computational physics, 48(3), 387-411.
DOI: 10.1016/0021-9991(82)90058-4
Google Scholar
[10]
Schreiber, R., & Keller, H. B. (1983). Driven cavity flows by efficient numerical techniques. Journal of Computational Physics, 49(2), 310-333.
DOI: 10.1016/0021-9991(83)90129-8
Google Scholar
[11]
Al-Amiri, A. M., Khanafer, K. M., & Pop, I. (2007). Numerical simulation of combined thermal and mass transport in a square lid-driven cavity. International journal of thermal sciences, 46(7), 662-671.
DOI: 10.1016/j.ijthermalsci.2006.10.003
Google Scholar
[12]
Ji, T. H., Kim, S. Y., & Hyun, J. M. (2007). Transient mixed convection in an enclosure driven by a sliding lid. Heat and mass transfer, 43(7), 629-638.
DOI: 10.1007/s00231-006-0113-y
Google Scholar
[13]
Mohamad, A. A., & Viskanta, R. (1996). Flow and heat transfer in a lid-driven cavity filled with a stably stratified fluid. International Journal of Multiphase Flow, 22(S1), 95-95.
DOI: 10.1016/s0301-9322(97)88146-3
Google Scholar
[14]
T Basak, T., Roy, S., Sharma, P. K., & Pop, I. (2009). Analysis of mixed convection flows within a square cavity with uniform and non-uniform heating of bottom wall. International Journal of Thermal Sciences, 48(5), 891-912.
DOI: 10.1016/j.ijthermalsci.2008.08.003
Google Scholar
[15]
Rajarathinam, M., Nithyadevi, N., & Chamkha, A. J. (2018). Heat transfer enhancement of mixed convection in an inclined porous cavity using Cu-water nanofluid. Advanced Powder Technology, 29(3), 590-605.
DOI: 10.1016/j.apt.2017.11.032
Google Scholar
[16]
Alsabery, A. I., Ismael, M. A., Chamkha, A. J., & Hashim, I. (2018). Mixed convection of Al2O3-water nanofluid in a double lid-driven square cavity with a solid inner insert using Buongiorno's two-phase model. International Journal of Heat and Mass Transfer, 119, 939-961.
DOI: 10.1016/j.ijheatmasstransfer.2017.11.136
Google Scholar
[17]
Rashad, A. M., Ismael, M. A., Chamkha, A. J., & Mansour, M. A. (2016). MHD mixed convection of localized heat source/sink in a nanofluid-filled lid-driven square cavity with partial slip. Journal of the Taiwan Institute of Chemical Engineers, 68, 173-186.
DOI: 10.1016/j.jtice.2016.08.033
Google Scholar
[18]
Çolak, E., Ekici, Ö., & Öztop, H. F. (2021). Mixed convection in a lid-driven cavity with partially heated porous block. International Communications in Heat and Mass Transfer, 126, 105450.
DOI: 10.1016/j.icheatmasstransfer.2021.105450
Google Scholar
[19]
Zhang, Y., Lin, H., Chaturvedi, R., Singh, P. K., Mansir, I. B., Zhang, K., & Alhoee, J. (2023). Mixed convection of EG/NEPCM inside a lid-driven cavity with a rotating cylinder. Case Studies in Thermal Engineering, 47, 103072.
DOI: 10.1016/j.csite.2023.103072
Google Scholar
[20]
Moayedi, H., Amanifard, N., & Deylami, H. M. (2022). A comparative study of the effect of fin shape on mixed convection heat transfer in a lid-driven square cavity. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 44(8), 322.
DOI: 10.1007/s40430-022-03623-7
Google Scholar
[21]
Borbora, M. H., Vasu, B., & Chamkha, A. J. (2023). A review study of numerical simulation of lid-driven cavity flow with nanofluids. Journal of Nanofluids, 12(3), 589-604.
DOI: 10.1166/jon.2023.1930
Google Scholar
[22]
Abu-Nada, E., & Chamkha, A. J. (2014). Mixed convection flow of a nanofluid in a lid-driven cavity with a wavy wall. International Communications in Heat and Mass Transfer, 57, 36-47.
DOI: 10.1016/j.icheatmasstransfer.2014.07.013
Google Scholar
[23]
Selimefendigil, F., & Öztop, H. F. (2019). MHD mixed convection of nanofluid in a flexible walled inclined lid-driven L-shaped cavity under the effect of internal heat generation. Physica A: Statistical Mechanics and its Applications, 534, 122144.
DOI: 10.1016/j.physa.2019.122144
Google Scholar
[24]
Yeasmin, S., Billah, M. M., Molla, M. Z., & Hoque, K. E. (2022). Numerical analysis of unsteady mixed convection heat transfer characteristics of nanofluids confined within a porous lid-driven L-shaped cavity. International Journal of Thermofluids, 16, 100218.
DOI: 10.1016/j.ijft.2022.100218
Google Scholar
[25]
Cimpean, D. S., Sheremet, M. A., & Pop, I. (2020). Mixed convection of hybrid nanofluid in a porous trapezoidal chamber. International Communications in Heat and Mass Transfer, 116, 104627.
DOI: 10.1016/j.icheatmasstransfer.2020.104627
Google Scholar
[26]
Shuvo, M. S., Hasib, M. H., & Saha, S. (2022). Entropy generation and characteristics of mixed convection in lid-driven trapezoidal tilted enclosure filled with nanofluid. Heliyon, 8(12).
DOI: 10.1016/j.heliyon.2022.e12079
Google Scholar
[27]
Hussein, A. A. (2023). Mixed convection heat transfer in trapezoidal lid-driven cavity with uniformly heated inner circular cylinder. Archives of Thermodynamics, 99-118.
DOI: 10.24425/ather.2023.147539
Google Scholar
[28]
Chamkha, A. J., & Ismael, M. A. (2016). Magnetic field effect on mixed convection in lid-driven trapezoidal cavities filled with a Cu–water nanofluid with an aiding or opposing side wall. Journal of Thermal Science and Engineering Applications, 8(3), 031009.
DOI: 10.1115/1.4033211
Google Scholar
[29]
Hamzah, H., Zontul, H., & Sahin, B. (2025). Exploring Homogeneous and Discrete Models for Predicting Hydrothermal Flow and Entropy Generation. Heat Transfer Engineering, 1-23.
DOI: 10.1080/01457632.2025.2489706
Google Scholar
[30]
Nayak, R. K., Bhattacharyya, S., & Pop, I. (2016). Numerical study on mixed convection and entropy generation of a nanofluid in a lid-driven square enclosure. Journal of Heat Transfer, 138(1), 012503.
DOI: 10.1115/1.4031178
Google Scholar
[31]
Khorasanizadeh, H., Nikfar, M., & Amani, J. (2013). Entropy generation of Cu–water nanofluid mixed convection in a cavity. European Journal of Mechanics-B/Fluids, 37, 143-152.
DOI: 10.1016/j.euromechflu.2012.09.002
Google Scholar
[32]
Mamourian, M., Shirvan, K. M., Ellahi, R., & Rahimi, A. B. (2016). Optimization of mixed convection heat transfer with entropy generation in a wavy surface square lid-driven cavity by means of Taguchi approach. International Journal of Heat and Mass Transfer, 102, 544-554.
DOI: 10.1016/j.ijheatmasstransfer.2016.06.056
Google Scholar
[33]
Cho, C. C. (2018). Heat transfer and entropy generation of mixed convection flow in Cu-water nanofluid-filled lid-driven cavity with wavy surface. International Journal of Heat and Mass Transfer, 119, 163-174.
DOI: 10.1016/j.ijheatmasstransfer.2017.11.090
Google Scholar
[34]
Hussain, S., Mehmood, K., & Sagheer, M. (2016). MHD mixed convection and entropy generation of water–alumina nanofluid flow in a double lid driven cavity with discrete heating. Journal of Magnetism and Magnetic Materials, 419, 140-155.
DOI: 10.1016/j.jmmm.2016.06.006
Google Scholar
[35]
Albensoeder, S., Kuhlmann, H. C., & Rath, H. J. (2001). Multiplicity of steady two-dimensional flows in two-sided lid-driven cavities. Theoretical and Computational Fluid Dynamics, 14(4), 223-241.
DOI: 10.1007/s001620050138
Google Scholar
[36]
Azzouz, E. A., & Houat, S. (2025). Bifurcation of antiparallel motion of the flow in a two-sided lid-driven cavity. Physics of Fluids, 37(7).
DOI: 10.1063/5.0271758
Google Scholar
[37]
Benzema, M., Benkahla, Y. K., Labsi, N., Ouyahia, S. E., & El Ganaoui, M. (2019). Second law analysis of MHD mixed convection heat transfer in a vented irregular cavity filled with Ag–MgO/water hybrid nanofluid. Journal of Thermal Analysis and Calorimetry, 137(3), 1113-1132.
DOI: 10.1007/s10973-019-08017-x
Google Scholar
[38]
Patankar, S. (2018). Numerical heat transfer and fluid flow. CRC press.
Google Scholar
[39]
Jasim, L., Alkhabbaz, A., & Hamzah, H. (2023). Preferred location of the porous sleeve in a concentric annulus depending on the thermal insulation. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 237(8), 2002-2013.
DOI: 10.1177/09544062221133940
Google Scholar
[40]
Wang, F., Animasaun, I. L., & Muhammad, T. (2025). Anisotropic turbulent flow of water through converging wavy-aluminum-circular pipe with five half-cycles: insight into the significance of four-branch minor-inlet angle. Journal of Non-Equilibrium Thermodynamics, 50 (4), 513-544. https://doi.org/10.1515/jnet-2025-0046 26.
DOI: 10.1515/jnet-2025-0046
Google Scholar
[41]
Li, L., Animasaun, I. L., Koriko, O. K., Muhammad, T., & Elnaqeeb, T. (2024). Insight into turbulent Reynolds number at the regular, converging, and diverging outlets: dynamics of air, water, and kerosene through y-shaped cylindrical copper ducts. International Communications in Heat and Mass Transfer, 159, 108044.
DOI: 10.1016/j.icheatmasstransfer.2024.108044
Google Scholar
[42]
Animasaun, I. L., Muhammad, T., & Yook, S. J. (2025). Exploration of Half‐Cycle Length of Converging Circular Wavy Duct with Diverging‐Outlet: Turbulent Water Dynamics. Advanced Theory and Simulations, 2500038.
DOI: 10.1002/adts.202500038
Google Scholar
[43]
Talebi, F., Mahmoudi, A. H., & Shahi, M. (2010). Numerical study of mixed convection flows in a square lid-driven cavity utilizing nanofluid. International Communications in Heat and Mass Transfer, 37(1), 79-90.
DOI: 10.1016/j.icheatmasstransfer.2009.08.013
Google Scholar
[44]
Ilis, G. G., Mobedi, M., & Sunden, B. (2008). Effect of aspect ratio on entropy generation in a rectangular cavity with differentially heated vertical walls. International Communications in Heat and Mass Transfer, 35(6), 696-703.
DOI: 10.1016/j.icheatmasstransfer.2008.02.002
Google Scholar