[1]
World Energy Council. 2010. Biofuels: Policies, Standards and Technologies. [Online] Available at https://www.worldenergy.org/assets/downloads/PUB_biofuels_Policies_ Standards_and_Technologies_exec_sum_2010_WEC.pdf [Accessed 15th Februar, 2025].
Google Scholar
[2]
S. Matali, N. A. Rahman, S. S. Idris, N. Yaacob, A. B. Alias. Lignocellulosic biomass solid fuel properties enhancement via torrefaction. Procedia Eng. 2016, 148:671–678.
DOI: 10.1016/j.proeng.2016.06.550
Google Scholar
[3]
G. Bridgeman, J.M. Jones, I. Shield and P.T. Williams. Torrefaction of reed canary grass, wheat straw and willow to enhance solid fuel qualities and combustion properties. Fuel, 2008, 876:844-856.
DOI: 10.1016/j.fuel.2007.05.041
Google Scholar
[4]
Renewable Energy Policy Network for the 21st Century (REN21), "Renewables 2011, Global Status Report," 2011, Paris, pp.1-116. https://www.ren21.net/wp-content/uploads/2019/05/GSR2011_Full-Report_English.pdf
DOI: 10.3390/resources8030139
Google Scholar
[5]
M. Balat, M. Balat, E. Kirtay and H. Balat. Main routes for the thermo-conversion of biomass into fuels and chemicals. Part 1: pyrolysis systems. Energy Conv Manag., 2009, 50:3147–3157.
DOI: 10.1016/j.enconman.2009.08.014
Google Scholar
[6]
Koh, L.P. and W.K. Hoi. 2003. Sustainable biomass production for energy in Malaysia. Biomass and Bioenergy 25:517-529.
DOI: 10.1016/s0961-9534(03)00088-6
Google Scholar
[7]
A.S. Sambo, A.C. Etonihu and A. M. Mohammed. Biogas production from co-digestion of selected agricultural wastes in Nigeria. Standard Scientific Research and Essays, 2015, 3(10): 302-308.
DOI: 10.29121/granthaalayah.v3.i11.2015.2909
Google Scholar
[8]
I. A. Daniyan, K. Mpofu, O. L. Daniyan and I. D. Uchegbu. A framework for the production of renewable energy from waste tyre pyrolysis. International Conference on Electrical, Computer and Energy Technologies, ICECET. Held between 9th-10th December, Cape Town, South Africa. Published in IEEE Xplore, 2021, pp.1-6.
DOI: 10.1109/ICECET52533.2021.9698706
Google Scholar
[9]
I. A. Daniyan, E. I. Bello, T. I. Ogedengbe and P. B. Mogaji. Gas chromatography and Fourier transform infrared analysis of biodiesel from used and unused palm olein oil. International Journal of Engineering Research in Africa, 2019 42:47-64.
DOI: 10.4028/www.scientific.net/jera.42.47
Google Scholar
[10]
S. K. Karmee. Liquid biofuels from food waste: Current trends, prospect and limitation. Renewable and Sustainable Energy Reviews, 2016, 53,945-953.
DOI: 10.1016/j.rser.2015.09.041
Google Scholar
[11]
F-B. Yu, X-P. Luo, C-F. Song, M-X. Zhang, S-D. Shan. Concentrated biogas slurry enhanced soil fertility and tomato quality. Acta Agriculturae Scandinavica, Section B - Soil & Plant Science, 2010, 60(3):262-268.
DOI: 10.1080/09064710902893385
Google Scholar
[12]
Y. Makkawi, M. Khan, F. H. Pour, O. Moussa, B. Mohamed, H. Alnoman, Y. Elsayed. A comparative analysis of second-generation biofuels and its potentials for large-scale production in arid and semi-arid regions. Fuel, 2023, 343, 127893.
DOI: 10.1016/j.fuel.2023.127893
Google Scholar
[13]
S. Prasad, Amit. Kumar and K. S. Muralikrishna. Biofuels production: A sustainable solution to combat climate change. Indian Journal of Agricultural Sciences, 84 (12): 1443–52.
DOI: 10.56093/ijas.v84i12.45210
Google Scholar
[14]
E. Kouhgardi, S. Zendehboudi, O. Mohammadzadeh, A. Lohi, I. Chatzis. Current status and future prospects of biofuel production from brown algae in North America: Progress and challenges. Renewable and Sustainable Energy Reviews, 2023, 172, 113012.
DOI: 10.1016/j.rser.2022.113012
Google Scholar
[15]
N. Nkosi, E. Muzenda, T. A. Mamvura, M. Belaid and B. Patel. The development of a waste tyre pyrolysis production plant business model for the Gauteng Region, South Africa. Processes, 2020, 8, 766.
DOI: 10.3390/pr8070766
Google Scholar
[16]
P. T. Williams. Pyrolysis of waste tyres: A review. Waste Management, 2013, 33:1714–1728.
DOI: 10.1016/j.wasman.2013.05.003
Google Scholar
[17]
M. Miranda, F. Pinto, I. Gulyurtlu, I. Cabrita. Pyrolysis of rubber tyre wastes: a kinetic study. Fuel, 2013, 103, 542–552.
DOI: 10.1016/j.fuel.2012.06.114
Google Scholar
[18]
M. Banar, V. Akyıldız, A. Ozkan, Z. Cokaygil, and O. E. Onay. Characterization of pyrolytic oil obtained from pyrolysis of TDF (Tire Derived Fuel). Energy Conversion and Management, 2012, 62:22–30.
DOI: 10.1016/j.enconman.2012.03.019
Google Scholar
[19]
E. Aylon, A. Fernandez-Colino, R. Murillo, M. V. Navarro, T. Garcia, and A. M. Mastral. 2011. Valorisation of waste tyre by pyrolysis in a moving bed reactor. Waste Management, 2011, 30:1220–1224.
DOI: 10.1016/j.wasman.2009.10.001
Google Scholar
[20]
S. Q. Li, Q. Yao, Y. Chi, J. H. Yan and K. F. Cen. Pilot-scale pyrolysis of scrap tires in a continuous rotary kiln reactor. Industrial Engineering Chemistry Research, 2004, 43, 5133–5145.
DOI: 10.1021/ie030115m
Google Scholar
[21]
W. Kaminsky, C. Mennerich and Z. Zhang, Z. Feedstock recycling of synthetic and natural rubber by pyrolysis in a fluidized bed. Journal of Analytical and Applied Pyrolysis, 2009, 85, 334–337.
DOI: 10.1016/j.jaap.2008.11.012
Google Scholar
[22]
G. Lopez, M. Olazar, R. Aguado, G. Elordi, M. Amutio, M.Artetxe and J. Bilbao. Vacuum pyrolysis of waste tires by continuously feeding into a conical spouted bed reactor. Ind. Eng. Chem. Res., 2010, 49, 8990–8997.
DOI: 10.1021/ie1000604
Google Scholar
[23]
J. Conesa, I. Martian-Gulloan, R. Font and J. Jauhiainen. Complete study of the pyrolysis and gasification of scrap tires in a pilot plant reactor. Environmental Science and Technology, 2004, 38, 3189–3194.
DOI: 10.1021/es034608u
Google Scholar
[24]
M. Olazar, M.J. San Jose, S. Alvaerz, A. Morales and J. Bilbao. Design of conical spouted beds for the handling of low-density solids. Industrial Engineering Chemistry Research, 2004, 43, 655–661.
DOI: 10.1021/ie030613v
Google Scholar
[25]
R. M., Islam, M. U., Hossain Joardder, M. A. Kader and M. R. Islam Sarker. Valorization of solid tire wastes available in Bangladesh by thermal treatment. In: Proceedings of the WasteSafe 2011–2nd International Conference on Solid Waste Management in the Developing Countries, 13– 15 February, Khulna, Bangladesh, 2011.
DOI: 10.1016/j.wasman.2011.04.017
Google Scholar
[26]
D. Kardaś, J. Kluska and P. Kazimierski. The course and effects of syngas production from beechwood and RDF in updraft reactor in the light of experimental tests and numerical calculations. Thermal Science and Engineering Progress, 2018, 8,136-144.
DOI: 10.1016/j.tsep.2018.08.020
Google Scholar
[27]
H. Aburas and A. Demirbas. Evaluation of beech for production of bio-char, bio-oil and gaseous materials. Process Safety and Environmental Protection, 2015, 94, 29-36.
DOI: 10.1016/j.psep.2014.12.004
Google Scholar
[28]
Y. Gao, M. Wang, A. Raheem, F. Wang, J. Wei, D. Xu, X. Song, W. Bao, A. Huang, S. Zhang, and H. Zhang. ACS Omega, 2023 8 (35), 31620-31631.
DOI: 10.1021/acsomega.3c03050
Google Scholar
[29]
E. Danso-Boateng and O-W. Achaw. Bioenergy and biofuel production from biomass using thermochemical conversions technologies—a review. AIMS Energy, 10(4): 585–647.
DOI: 10.3934/energy.2022030
Google Scholar
[30]
J. Chojnacki, J. Najser, K. Rokosz, V. Peer, J. Kielarand and B. Berner. (2020). Syngas composition: gasification of wood pellet with water steam through a reactor with continuous biomass feed system. Energies, 13(17), 4376.
DOI: 10.3390/en13174376
Google Scholar
[31]
United Nations. SDG Goals 7: Ensure access to affordable, reliable, sustainable and modern energy for all. [Online] Available at https://sdgs.un.org/goals/goal7 [Accessed 15th February, 2025].
DOI: 10.1108/978-1-83797-549-520241008
Google Scholar
[32]
M. Awais, W. Li, A. Arshad, Z. Haydar, N. Yaqoob and S. Hussain. Evaluating removal of tar contents in syngas produced from down draft biomass gasification system. International Journal of Green Energy, 2018, 15:12, 724-731.
DOI: 10.1080/15435075.2018.1525557
Google Scholar
[33]
M. M. Wright, D. E. Daugaard, J. A. Satrio and R. C. Brown. Techno-economic analysis of biomass fast pyrolysis to transportation fuels. Fuel, 2010, 89, Supplement 1, pp. S2-S10.
DOI: 10.1016/j.fuel.2010.07.029
Google Scholar
[34]
Y.B. Yang, C. Ryu, A. Khor, N. Yates, V. N. Sharifi and J. Swithenbank. Effect of fuel properties on biomass combustion. Part II. Modelling approach - Identification of the controlling factors, Fuel, 2005, 84(16):2116-2130.
DOI: 10.1016/j.fuel.2005.04.023
Google Scholar
[35]
I.A. Daniyan, S. P. Ayodeji, A. Lawal and S. Mrausi. Drilling of titanium alloy (Ti6Al4V) using response surface methodology: an experimental approach. 2024 International Conference on Science, Engineering and Business for Driving Sustainable Development Goals (SEB4SDG), Omu-Aran, Nigeria, 2024, pp.1-6.
DOI: 10.1109/SEB4SDG60871.2024.10630144
Google Scholar
[36]
I. A. Daniyan, A. O. Adeodu, F. Ale and O. Aderoba. Investigation of surface roughness of titanium alloy (Ti6Al4V) during turning operation using surface response methodology. 2023 IEEE 14th International Conference on Mechanical and Intelligent Manufacturing Technologies, Cape Town, South Africa from May 26-28, 2023. Published in IEEE Xplore, pp.143-147.
DOI: 10.1109/icmimt59138.2023.10200627
Google Scholar
[37]
A. O. Adeodu, M. G. Kanakana-Katumba, R. W. Maladzhi, and I. A. Daniyan. Optimization of injection process parameters of plastic reinforced composites using response surface methodology and central composite design. Proceedings of the American Society for Composites—Thirty-Sixth Technical Conference on Composite Materials, US. 2021, pp.1135-1156.
DOI: 10.12783/asc36/35827
Google Scholar
[38]
I. A. Daniyan, F. Ale, F. Fameso, S. Mrausi and J. Ndambuk. Computer aided simulation and experimental investigation of the machinability of Al 6065 T6 during milling operation. International Journal of Advanced Manufacturing Technology, 2024, 133(1-2), p.589–607.
DOI: 10.1007/s00170-024-13772-9
Google Scholar
[39]
S. A. Scott, M. P. Davey, J. S. Dennis, I. Horst, C. J. Howe, D. J. Lea-Smith and A. G. Smith. Biodiesel from algae: challenges and prospects. Curr. Opin. Biotechnol. 2010, 21: 277-286.
DOI: 10.1016/j.copbio.2010.03.005
Google Scholar
[40]
M. Kelbon, S. Bousman and B. Krieger-Brockett. Conditions that favor tar production from pyrolysis of large moist wood particles; In ACS Symposium Series 376; Pyrolysis oils from biomass producing, analyzing, and upgrading, Soltes, E.J., Milne, T.A., Eds., 1988, American Chemical Society, Washington, DC, 1988, pp.41-54.
DOI: 10.1021/bk-1988-0376.ch005
Google Scholar
[41]
H. Aydın and C. Ilkılıc. Optimization of fuel production from waste vehicle tires by pyrolysis and resembling to diesel fuel by various desulfurization methods. Fuel, 2012, 102, 605–612.
DOI: 10.1016/j.fuel.2012.06.067
Google Scholar