Process Design and Optimisation of Parameters for the Production of Energy from Wood Biomass via Pyrolysis

Article Preview

Abstract:

The potential for biomass as an alternative source of energy is being studied widely. In this study, process flow design is done to analyse the pyrolysis of biomass and its products and how energy can be generated from its products. The energy used per process is calculated and the heat required in the processes were also calculated. The optimization of process parameters for the production of energy from wood biomass via pyrolysis was conducted using the Response Surface Methodology (RS) in the Design Expert 2022 environment using the following range of process parameters: temperature (400-1000°C), vapour residence time (5-30 min) and particle size (0.5-2.0 mm). The feasible combination of process parameters from the design of experiment was validated via physical experimentation having three responses namely: yield of char, yield of biofuel and yield of syngas. The designed experiments and corresponding outcomes produced three predictive models for estimating the yields of char, biofuel and syngas as a function of temperature, vapour residence time and particle size. The results obtained indicated that low temperature favours the formation of biochar while moderate temperature favours the formation of biofuel and the production of syngas is favoured by elevated temperature. The optimal values of process parameters and responses obtained include: temperature (642.271 °C), vapour residence time (6.248 min), particle size (0.603 mm), yield of char (71.9%), yield of biofuel (71.9%) and yield of syngas (76.5%). This study adds to the literature on the pyrolysis process for the conversion of wood biomass to energy. It also contributes to the fields of renewable and sustainable energy generation.Keywords: Biomass, biofuel, char, renewable and sustainable energy, RSM, syngas

You might also be interested in these eBooks

Info:

Periodical:

Pages:

69-90

Citation:

Online since:

February 2026

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2026 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] World Energy Council. 2010. Biofuels: Policies, Standards and Technologies. [Online] Available at https://www.worldenergy.org/assets/downloads/PUB_biofuels_Policies_ Standards_and_Technologies_exec_sum_2010_WEC.pdf [Accessed 15th Februar, 2025].

Google Scholar

[2] S. Matali, N. A. Rahman, S. S. Idris, N. Yaacob, A. B. Alias. Lignocellulosic biomass solid fuel properties enhancement via torrefaction. Procedia Eng. 2016, 148:671–678.

DOI: 10.1016/j.proeng.2016.06.550

Google Scholar

[3] G. Bridgeman, J.M. Jones, I. Shield and P.T. Williams. Torrefaction of reed canary grass, wheat straw and willow to enhance solid fuel qualities and combustion properties. Fuel, 2008, 876:844-856.

DOI: 10.1016/j.fuel.2007.05.041

Google Scholar

[4] Renewable Energy Policy Network for the 21st Century (REN21), "Renewables 2011, Global Status Report," 2011, Paris, pp.1-116. https://www.ren21.net/wp-content/uploads/2019/05/GSR2011_Full-Report_English.pdf

DOI: 10.3390/resources8030139

Google Scholar

[5] M. Balat, M. Balat, E. Kirtay and H. Balat. Main routes for the thermo-conversion of biomass into fuels and chemicals. Part 1: pyrolysis systems. Energy Conv Manag., 2009, 50:3147–3157.

DOI: 10.1016/j.enconman.2009.08.014

Google Scholar

[6] Koh, L.P. and W.K. Hoi. 2003. Sustainable biomass production for energy in Malaysia. Biomass and Bioenergy 25:517-529.

DOI: 10.1016/s0961-9534(03)00088-6

Google Scholar

[7] A.S. Sambo, A.C. Etonihu and A. M. Mohammed. Biogas production from co-digestion of selected agricultural wastes in Nigeria. Standard Scientific Research and Essays, 2015, 3(10): 302-308.

DOI: 10.29121/granthaalayah.v3.i11.2015.2909

Google Scholar

[8] I. A. Daniyan, K. Mpofu, O. L. Daniyan and I. D. Uchegbu. A framework for the production of renewable energy from waste tyre pyrolysis. International Conference on Electrical, Computer and Energy Technologies, ICECET. Held between 9th-10th December, Cape Town, South Africa. Published in IEEE Xplore, 2021, pp.1-6.

DOI: 10.1109/ICECET52533.2021.9698706

Google Scholar

[9] I. A. Daniyan, E. I. Bello, T. I. Ogedengbe and P. B. Mogaji. Gas chromatography and Fourier transform infrared analysis of biodiesel from used and unused palm olein oil. International Journal of Engineering Research in Africa, 2019 42:47-64.

DOI: 10.4028/www.scientific.net/jera.42.47

Google Scholar

[10] S. K. Karmee. Liquid biofuels from food waste: Current trends, prospect and limitation. Renewable and Sustainable Energy Reviews, 2016, 53,945-953.

DOI: 10.1016/j.rser.2015.09.041

Google Scholar

[11] F-B. Yu, X-P. Luo, C-F. Song, M-X. Zhang, S-D. Shan. Concentrated biogas slurry enhanced soil fertility and tomato quality. Acta Agriculturae Scandinavica, Section B - Soil & Plant Science, 2010, 60(3):262-268.

DOI: 10.1080/09064710902893385

Google Scholar

[12] Y. Makkawi, M. Khan, F. H. Pour, O. Moussa, B. Mohamed, H. Alnoman, Y. Elsayed. A comparative analysis of second-generation biofuels and its potentials for large-scale production in arid and semi-arid regions. Fuel, 2023, 343, 127893.

DOI: 10.1016/j.fuel.2023.127893

Google Scholar

[13] S. Prasad, Amit. Kumar and K. S. Muralikrishna. Biofuels production: A sustainable solution to combat climate change. Indian Journal of Agricultural Sciences, 84 (12): 1443–52.

DOI: 10.56093/ijas.v84i12.45210

Google Scholar

[14] E. Kouhgardi, S. Zendehboudi, O. Mohammadzadeh, A. Lohi, I. Chatzis. Current status and future prospects of biofuel production from brown algae in North America: Progress and challenges. Renewable and Sustainable Energy Reviews, 2023, 172, 113012.

DOI: 10.1016/j.rser.2022.113012

Google Scholar

[15] N. Nkosi, E. Muzenda, T. A. Mamvura, M. Belaid and B. Patel. The development of a waste tyre pyrolysis production plant business model for the Gauteng Region, South Africa. Processes, 2020, 8, 766.

DOI: 10.3390/pr8070766

Google Scholar

[16] P. T. Williams. Pyrolysis of waste tyres: A review. Waste Management, 2013, 33:1714–1728.

DOI: 10.1016/j.wasman.2013.05.003

Google Scholar

[17] M. Miranda, F. Pinto, I. Gulyurtlu, I. Cabrita. Pyrolysis of rubber tyre wastes: a kinetic study. Fuel, 2013, 103, 542–552.

DOI: 10.1016/j.fuel.2012.06.114

Google Scholar

[18] M. Banar, V. Akyıldız, A. Ozkan, Z. Cokaygil, and O. E. Onay. Characterization of pyrolytic oil obtained from pyrolysis of TDF (Tire Derived Fuel). Energy Conversion and Management, 2012, 62:22–30.

DOI: 10.1016/j.enconman.2012.03.019

Google Scholar

[19] E. Aylon, A. Fernandez-Colino, R. Murillo, M. V. Navarro, T. Garcia, and A. M. Mastral. 2011. Valorisation of waste tyre by pyrolysis in a moving bed reactor. Waste Management, 2011, 30:1220–1224.

DOI: 10.1016/j.wasman.2009.10.001

Google Scholar

[20] S. Q. Li, Q. Yao, Y. Chi, J. H. Yan and K. F. Cen. Pilot-scale pyrolysis of scrap tires in a continuous rotary kiln reactor. Industrial Engineering Chemistry Research, 2004, 43, 5133–5145.

DOI: 10.1021/ie030115m

Google Scholar

[21] W. Kaminsky, C. Mennerich and Z. Zhang, Z. Feedstock recycling of synthetic and natural rubber by pyrolysis in a fluidized bed. Journal of Analytical and Applied Pyrolysis, 2009, 85, 334–337.

DOI: 10.1016/j.jaap.2008.11.012

Google Scholar

[22] G. Lopez, M. Olazar, R. Aguado, G. Elordi, M. Amutio, M.Artetxe and J. Bilbao. Vacuum pyrolysis of waste tires by continuously feeding into a conical spouted bed reactor. Ind. Eng. Chem. Res., 2010, 49, 8990–8997.

DOI: 10.1021/ie1000604

Google Scholar

[23] J. Conesa, I. Martian-Gulloan, R. Font and J. Jauhiainen. Complete study of the pyrolysis and gasification of scrap tires in a pilot plant reactor. Environmental Science and Technology, 2004, 38, 3189–3194.

DOI: 10.1021/es034608u

Google Scholar

[24] M. Olazar, M.J. San Jose, S. Alvaerz, A. Morales and J. Bilbao. Design of conical spouted beds for the handling of low-density solids. Industrial Engineering Chemistry Research, 2004, 43, 655–661.

DOI: 10.1021/ie030613v

Google Scholar

[25] R. M., Islam, M. U., Hossain Joardder, M. A. Kader and M. R. Islam Sarker. Valorization of solid tire wastes available in Bangladesh by thermal treatment. In: Proceedings of the WasteSafe 2011–2nd International Conference on Solid Waste Management in the Developing Countries, 13– 15 February, Khulna, Bangladesh, 2011.

DOI: 10.1016/j.wasman.2011.04.017

Google Scholar

[26] D. Kardaś, J. Kluska and P. Kazimierski. The course and effects of syngas production from beechwood and RDF in updraft reactor in the light of experimental tests and numerical calculations. Thermal Science and Engineering Progress, 2018, 8,136-144.

DOI: 10.1016/j.tsep.2018.08.020

Google Scholar

[27] H. Aburas and A. Demirbas. Evaluation of beech for production of bio-char, bio-oil and gaseous materials. Process Safety and Environmental Protection, 2015, 94, 29-36.

DOI: 10.1016/j.psep.2014.12.004

Google Scholar

[28] Y. Gao, M. Wang, A. Raheem, F. Wang, J. Wei, D. Xu, X. Song, W. Bao, A. Huang, S. Zhang, and H. Zhang. ACS Omega, 2023 8 (35), 31620-31631.

DOI: 10.1021/acsomega.3c03050

Google Scholar

[29] E. Danso-Boateng and O-W. Achaw. Bioenergy and biofuel production from biomass using thermochemical conversions technologies—a review. AIMS Energy, 10(4): 585–647.

DOI: 10.3934/energy.2022030

Google Scholar

[30] J. Chojnacki, J. Najser, K. Rokosz, V. Peer, J. Kielarand and B. Berner. (2020). Syngas composition: gasification of wood pellet with water steam through a reactor with continuous biomass feed system. Energies, 13(17), 4376.

DOI: 10.3390/en13174376

Google Scholar

[31] United Nations. SDG Goals 7: Ensure access to affordable, reliable, sustainable and modern energy for all. [Online] Available at https://sdgs.un.org/goals/goal7 [Accessed 15th February, 2025].

DOI: 10.1108/978-1-83797-549-520241008

Google Scholar

[32] M. Awais, W. Li, A. Arshad, Z. Haydar, N. Yaqoob and S. Hussain. Evaluating removal of tar contents in syngas produced from down draft biomass gasification system. International Journal of Green Energy, 2018, 15:12, 724-731.

DOI: 10.1080/15435075.2018.1525557

Google Scholar

[33] M. M. Wright, D. E. Daugaard, J. A. Satrio and R. C. Brown. Techno-economic analysis of biomass fast pyrolysis to transportation fuels. Fuel, 2010, 89, Supplement 1, pp. S2-S10.

DOI: 10.1016/j.fuel.2010.07.029

Google Scholar

[34] Y.B. Yang, C. Ryu, A. Khor, N. Yates, V. N. Sharifi and J. Swithenbank. Effect of fuel properties on biomass combustion. Part II. Modelling approach - Identification of the controlling factors, Fuel, 2005, 84(16):2116-2130.

DOI: 10.1016/j.fuel.2005.04.023

Google Scholar

[35] I.A. Daniyan, S. P. Ayodeji, A. Lawal and S. Mrausi. Drilling of titanium alloy (Ti6Al4V) using response surface methodology: an experimental approach. 2024 International Conference on Science, Engineering and Business for Driving Sustainable Development Goals (SEB4SDG), Omu-Aran, Nigeria, 2024, pp.1-6.

DOI: 10.1109/SEB4SDG60871.2024.10630144

Google Scholar

[36] I. A. Daniyan, A. O. Adeodu, F. Ale and O. Aderoba. Investigation of surface roughness of titanium alloy (Ti6Al4V) during turning operation using surface response methodology. 2023 IEEE 14th International Conference on Mechanical and Intelligent Manufacturing Technologies, Cape Town, South Africa from May 26-28, 2023. Published in IEEE Xplore, pp.143-147.

DOI: 10.1109/icmimt59138.2023.10200627

Google Scholar

[37] A. O. Adeodu, M. G. Kanakana-Katumba, R. W. Maladzhi, and I. A. Daniyan. Optimization of injection process parameters of plastic reinforced composites using response surface methodology and central composite design. Proceedings of the American Society for Composites—Thirty-Sixth Technical Conference on Composite Materials, US. 2021, pp.1135-1156.

DOI: 10.12783/asc36/35827

Google Scholar

[38] I. A. Daniyan, F. Ale, F. Fameso, S. Mrausi and J. Ndambuk. Computer aided simulation and experimental investigation of the machinability of Al 6065 T6 during milling operation. International Journal of Advanced Manufacturing Technology, 2024, 133(1-2), p.589–607.

DOI: 10.1007/s00170-024-13772-9

Google Scholar

[39] S. A. Scott, M. P. Davey, J. S. Dennis, I. Horst, C. J. Howe, D. J. Lea-Smith and A. G. Smith. Biodiesel from algae: challenges and prospects. Curr. Opin. Biotechnol. 2010, 21: 277-286.

DOI: 10.1016/j.copbio.2010.03.005

Google Scholar

[40] M. Kelbon, S. Bousman and B. Krieger-Brockett. Conditions that favor tar production from pyrolysis of large moist wood particles; In ACS Symposium Series 376; Pyrolysis oils from biomass producing, analyzing, and upgrading, Soltes, E.J., Milne, T.A., Eds., 1988, American Chemical Society, Washington, DC, 1988, pp.41-54.

DOI: 10.1021/bk-1988-0376.ch005

Google Scholar

[41] H. Aydın and C. Ilkılıc. Optimization of fuel production from waste vehicle tires by pyrolysis and resembling to diesel fuel by various desulfurization methods. Fuel, 2012, 102, 605–612.

DOI: 10.1016/j.fuel.2012.06.067

Google Scholar