[1]
N. Sukhawipat, N. Saetung, J.F. Pilard, S. Bistac, A. Saetung, Synthesis and characterization of novel natural rubber based cationic waterborne polyurethane: Effect of emulsifier and diol class chain extender, J. Appl. Polym. Sci. 135 (2018) 17–19. https://doi.org/10.1002/ app.45715.
DOI: 10.1002/app.45715
Google Scholar
[2]
N. Sukhawipat, N. Saetung, J.-F. Pilard, S. Bistac, A. Saetung, Effects of molecular weight of hydroxyl telechelic natural rubber on novel cationic waterborne polyurethane: A new approach to water-based adhesives for leather applications, Int. J. Adhes. Adhes. 99 (2020).
DOI: 10.1016/j.ijadhadh.2020.102593
Google Scholar
[3]
J.O. Akindoyo, M.D.H. Beg, S. Ghazali, M.R. Islam, N. Jeyaratnam, A.R. Yuvaraj, Polyurethane types, synthesis and applications-a review, RSC Adv. 6 (2016) 114453–114482.
DOI: 10.1039/c6ra14525f
Google Scholar
[4]
C. Zhang, M.R. Kessler, Bio-based polyurethane foam made from compatible blends of vegetable-oil-based polyol and petroleum-based polyol, ACS Sustain. Chem. Eng. 3 (2015) 743–749.
DOI: 10.1021/acssuschemeng.5b00049
Google Scholar
[5]
T. Pechar, S. Sohn, G. Wilkes, S. Ghosh, C. Frazier, A. Fornof, T. Long, Characterization and comparison of polyurethane networks prepared using soybean‐based polyols with varying hydroxyl content and their blends with petroleum‐based polyols, J. Appl. Polym. Sci. 101 (2006) 1432–1443.
DOI: 10.1002/app.23625
Google Scholar
[6]
D.P. Pfister, Y. Xia, R.C. Larock, Recent advances in vegetable oil-based polyurethanes, ChemSusChem 4 (2011) 703–717.
DOI: 10.1002/cssc.201000378
Google Scholar
[7]
M. Kathalewar, N. Dhopatkar, B. Pacharane, A. Sabnis, P. Raut, V. Bhave, Chemical recycling of PET using neopentyl glycol: Reaction kinetics and preparation of polyurethane coatings, Prog. Org. Coatings 76 (2013) 147–156.
DOI: 10.1016/j.porgcoat.2012.08.023
Google Scholar
[8]
P. Benyathiar, P. Kumar, G. Carpenter, J. Brace, D. Mishra, Polyethylene Terephthalate (PET) Bottle-to-Bottle Recycling for the Beverage Industry: A Review, Polymers (Basel). 14 (2022) 1–29.
DOI: 10.3390/polym14122366
Google Scholar
[9]
J. Xin, Q. Zhang, J. Huang, R. Huang, Q.Z. Jaffery, D. Yan, Q. Zhou, J. Xu, X. Lu, Progress in the catalytic glycolysis of polyethylene terephthalate, J. Environ. Manage. 296 (2021) 113267.
DOI: 10.1016/j.jenvman.2021.113267
Google Scholar
[10]
H. Liu, Z. Zhang, X. Yu, S. Kan, Y. Luo, K. Han, Y. Liang, J. Gao, Preparation of polyol from waste polyethylene terephthalate (PET) and its application to polyurethane (PU) modified asphalt, Constr. Build. Mater. 427 (2024) 136286. https://doi.org/10.1016/j.conbuildmat. 2024.136286.
DOI: 10.1016/j.conbuildmat.2024.136286
Google Scholar
[11]
M. Kirpluks, E. Vanags, A. Abolins, S. Michalowski, A. Fridrihsone, U. Cabulis, High functionality bio-polyols from tall oil and rigid polyurethane foams formulated solely using bio-polyols, Materials (Basel). 13 (2020) 38–53.
DOI: 10.3390/MA13081985
Google Scholar
[12]
M. Philipp, B. Zimmer, M. Ostermeyer, J.K. Krüger, Polymerization-induced shrinkage and dynamic thermal expansion behavior during network formation of polyurethanes, Thermochim. Acta. 677 (2019) 144–150.
DOI: 10.1016/j.tca.2019.01.012
Google Scholar
[13]
O. Thomas, R.D. Priester, K.J. Hinze, D.D. Latham, Effect of cross‐link density on the morphology, thermal and mechanical properties of flexible molded polyurea/urethane foams and films, J. Polym. Sci. Part B Polym. Phys. 32 (1994) 2155–2169. https://doi.org/.
DOI: 10.1002/polb.1994.090321304
Google Scholar
[14]
A.M. Torres-Huerta, D. Del Angel-López, M.A. Domínguez-Crespo, D. Palma-Ramírez, M.E. Perales-Castro, A. Flores-Vela, Morphological and mechanical properties dependence of PLA amount in PET matrix processed by single-screw extrusion, Polym. - Plast. Technol. Eng. 55 (2016) 672–683.
DOI: 10.1080/03602559.2015.1132433
Google Scholar
[15]
A.P. Dos Santos Pereira, M.H.P. Da Silva, É.P. Lima, A. Dos Santos Paula, F.J. Tommasini, Processing and characterization of PET composites reinforced with geopolymer concrete waste, Mater. Res. 20 (2017) 411–420.
DOI: 10.1590/1980-5373-MR-2017-0734
Google Scholar
[16]
P. Wen, P. Gong, Y. Mi, J. Wang, S. Yang, Scalable fabrication of high quality graphene by exfoliation of edge sulfonated graphite for supercapacitor application, RSC Adv. 4 (2014) 35914–35918.
DOI: 10.1039/c4ra04788e
Google Scholar
[17]
S.H. Ding, T.L. Chew, P.C. Oh, A.L. Ahmad, Z.A. Jawad, Preparation of mixed matrix membrane using cellulose acetate incorporated with synthesized KIT-6 silica, J. Mech. Eng. Sci. 12 (2018) 3505–3514.
DOI: 10.15282/jmes.12.1.2018.17.0311
Google Scholar
[18]
G. Poggi, H.D. Santan, J. Smets, D. Chelazzi, D. Noferini, M.L. Petruzzellis, L. Pensabene Buemi, E. Fratini, P. Baglioni, Nanostructured bio-based castor oil organogels for the cleaning of artworks, J. Colloid Interface Sci. 638 (2023) 363–374. https://doi.org/10.1016/ j.jcis.2023.01.119.
DOI: 10.1016/j.jcis.2023.01.119
Google Scholar
[19]
N. Sukhawipat, N. Saetung, A. Saetung, Synthesis of Novel Cationic Waterborne Polyurethane from Natural Rubber and its Properties Testing, Key Eng. Mater. 705 (2016) 19–23.
DOI: 10.4028/www.scientific.net/KEM.705.19
Google Scholar
[20]
E.-S. Moussa Negim, L. Bekbayeva, G.A. Mun, Y.A. Zhalyrkasyn, A. Abilov, M. Idiris Saleh, Effects of NCO/OH Ratios on Physico-Mechanical Properties of Polyurethane Dispersion, World Appl. Sci. J. 14 (2011) 402–407.
Google Scholar
[21]
H. Yang, S. Cao, C. Wu, Z. Xi, J. Cai, Z. Yuan, J. Zhang, H. Xie, Bio-Based Polyurethane Asphalt Binder with Continuous Polymer-Phase Structure: Critical Role of Isocyanate Index in Governing Thermomechanical Performance and Phase Morphology, Molecules. 30 (2025) 1–18.
DOI: 10.3390/molecules30112466
Google Scholar