TiO₂-Chitosan Functionalized Polypropylene Nonwovens for Air Filtration Applications

Article Preview

Abstract:

In this study, a multifunctional air filtration material was developed by coating polypropylene (PP) nonwoven fabric with a chitosan/TiO₂ (P25) composite. The aim was to enhance air filtration efficiency. The chitosan–P25 composite was applied onto the PP nonwoven via a solution spray method followed by drying. Scanning electron microscopy (SEM) analysis revealed a uniform coating layer with good adherence to the PP fiber surface. X-ray diffraction (XRD) analysis confirmed the presence of crystalline TiO₂ in the P25 phases, as well as the semi-crystalline nature of the PP substrate. Air permeability tests showed a moderate reduction in air flow rate due to surface coating, while maintaining acceptable breathability for filter applications.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

59-66

Citation:

Online since:

February 2026

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2026 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Z. Zhou, Y. Liu, F. Duan, M. Qin, F. Wu, W. Sheng, L. Yang, J. Liu, K. He. Transcriptomic analyses of the biological effects of airborne PM2. 5 exposure on human bronchial epithelial cells. PloS one. 10 (2015.) e0138267.

DOI: 10.1371/journal.pone.0138267

Google Scholar

[2] K. Wang, W. Wang, D. Yang, Y. Huo, D. Wang. Surface modification of polypropylene non-woven fabric using atmospheric nitrogen dielectric barrier discharge plasma. Applied Surface Science. 256 (2010) 6859-6864.

DOI: 10.1016/j.apsusc.2010.04.101

Google Scholar

[3] K. Xu, L. Zhan, R. Yan, Q. Ke, A. Yin, C. Huang. Enhanced air filtration performances by coating aramid nanofibres on a melt-blown nonwoven. Nanoscale. 14 (2022) 419-427.

DOI: 10.1039/d1nr06159c

Google Scholar

[4] M. Rinaudo, Chitin and chitosan: Properties and applications. Progress in Polymer Science. 31 (2006) 603-632.

DOI: 10.1016/j.progpolymsci.2006.06.001

Google Scholar

[5] S. Rashki, K. Asgarpour, H. Tarrahimofrad, M. Hashemipour, M.S. Ebrahimi, H. Fathizadeh, A. Khorshidi, H. Khan, Z. Marzhoseyni, M. Salavati-Niasari, H. Mirzaei. Chitosan-based nanoparticles against bacterial infections. Carbohydrate Polymers. 251 (2021) 117108.

DOI: 10.1016/j.carbpol.2020.117108

Google Scholar

[6] A. Fujishima, T.N. Rao, D.A. Tryk. Titanium dioxide photocatalysis. Journal of Photochemistry and Photobiology C: Photochemistry Reviews. 1 (2000) 1-21.

DOI: 10.1016/s1389-5567(00)00002-2

Google Scholar

[7] T. Metanawin, P. Panutumrong, S. Metanawin. Well-defined poly(methyl methacrylate) hybrid titanium dioxide via miniemulsion polymerization: Design and evaluation of methylene blue dye degradation and antibacterial. Polymer Engineering & Science. 64 (2024) 2107-2120.

DOI: 10.1002/pen.26677

Google Scholar

[8] Y.-H. Cheng, S.-H. Yang, C.-C. Liu, A. Gefen, F.-H. Lin. Thermosensitive hydrogel made of ferulic acid-gelatin and chitosan glycerophosphate. Carbohydrate Polymers. 92 (2013) 1512-1519.

DOI: 10.1016/j.carbpol.2012.10.074

Google Scholar

[9] M.N. Hassan, M. Beg Mou. Surface modification of jute-cotton union fabric using TiO2 and ZnO nanoparticles for multifunctional properties. Heliyon. 10 (2024) e29970.

DOI: 10.1016/j.heliyon.2024.e29970

Google Scholar

[10] R. Orlando, M. Polat, A. Afshari, M.S. Johnson, P. Fojan. Electrospun Nanofibre Air Filters for Particles and Gaseous Pollutants. Sustainability. 13 (2021) 6553.

DOI: 10.3390/su13126553

Google Scholar