[1]
M.H. Matin, M. Dehsara, & A. Abbassi, Mixed convection MHD flow of nanofluid over a non-linear stretching sheet with effects of viscous dissipation and variable magnetic field. Mechanics, 18(4) (2012) 415-423.
DOI: 10.5755/j01.mech.18.4.2334
Google Scholar
[2]
T. Hayat, Z. Hussain, A. Alsaedi, & S. Asghar, Carbon nanotubes effects in the stagnation point flow towards a nonlinear stretching sheet with variable thickness. Adv. Powder Technol., 27(4) (2016) 1677-1688.
DOI: 10.1016/j.apt.2016.06.001
Google Scholar
[3]
B.C. Prasannakumara, N.S. Shashikumar, & P. Venkatesh, Boundary layer flow and heat transfer of fluid particle suspension with nanoparticles over a nonlinear stretching sheet embedded in a porous medium. Nonlinear Engineering, 6(3) (2017) 179-190.
DOI: 10.1515/nleng-2017-0004
Google Scholar
[4]
A.B. Jafar, S. Shafie, & I. Ullah, MHD radiative nanofluid flow induced by a nonlinear stretching sheet in a porous medium. Heliyon, 6(6) (2020) e04201.
DOI: 10.1016/j.heliyon.2020.e04201
Google Scholar
[5]
S.R. Mishra, P. Mathur, & H.M. Ali, Analysis of homogeneous–heterogeneous reactions in a micropolar nanofluid past a nonlinear stretching surface: semi-analytical approach. J. Therm. Anal. Calorim,, 144(6) (2021) 2247-2257.
DOI: 10.1007/s10973-020-10414-6
Google Scholar
[6]
K. Jabeen, M. Mushtaq, & R.M.A. Muntazir, Analysis of magnetic and non-magnetic nanoparticles with Newtonian/non-Newtonian base fluids over a nonlinear stretching sheet. Proc. Inst. Mech. Eng. C and P I MECH ENG C-J MEC., 237(19) (2023) 4439-4453.
DOI: 10.1177/09544062221103697
Google Scholar
[7]
B.J. Gireesha, C.G. Pavithra, & Sushma, Impact of new similarity transformation on analysis of nanoparticle shape effects on Casson nanofluid flow and heat transfer over a nonlinear stretching sheet with radiation. Int. J. Model. Simul., 0 (2024) 1-32.
DOI: 10.1080/02286203.2024.2394776
Google Scholar
[8]
S. Manjunatha, J.S. Kumar, & S.V.K. Varma, Impacts of heat generation and Buoyancy forces on hyperbolic Tangent Magneto ferrofluid flow with Darcy–Forchheimer model over a nonlinear stretching sheet: RSM analysis. Eur. Phys. J. Plus., 140(6) (2025) 577.
DOI: 10.1140/epjp/s13360-025-06477-9
Google Scholar
[9]
I. Tlili, H.A. Nabwey, G.P. Ashwinkumar, & N. Sandeep, 3-D magnetohydrodynamic AA7072-AA7075/methanol hybrid nanofluid flow above an uneven thickness surface with slip effect. Sci. Rep., 10(1) (2020) 4265.
DOI: 10.1038/s41598-020-61215-8
Google Scholar
[10]
K. Das, S.S. Giri, & P.K. Kundu, Influence of Hall current effect on hybrid nanofluid flow over a slender stretching sheet with zero nanoparticle flux. Heat Transfer, 50(7) (2021) 7232-7250.
DOI: 10.1002/htj.22226
Google Scholar
[11]
N. Hameed, S. Noeiaghdam, W. Khan, B. Pimpunchat, U. Fernandez-Gamiz, M.S. Khan, & A. Rehman, Analytical analysis of the magnetic field, heat generation and absorption, viscous dissipation on couple stress casson hybrid nano fluid over a nonlinear stretching surface. Results Eng., 16 (2022) 100601.
DOI: 10.1016/j.rineng.2022.100601
Google Scholar
[12]
K. Guedri, A. Khan, N. Sene, Z. Raizah, A. Saeed, & A.M. Galal, Thermal flow for radiative ternary hybrid nanofluid over nonlinear stretching sheet subject to Darcy–Forchheimer phenomenon. Math. Probl. Eng., 2022(1) (2022) 3429439.
DOI: 10.1155/2022/3429439
Google Scholar
[13]
J. Hasnain & N. Abid, Numerical investigation for thermal growth in water and engine oil-based ternary nanofluid using three different shaped nanoparticles over a linear and nonlinear stretching sheet. Numer. Heat Transf.; A: Appl., 83(12) (2023) 1365-1376.
DOI: 10.1080/10407782.2022.2104582
Google Scholar
[14]
F.A.A. Elsebaee, M. Bilal, S.R. Mahmoud, M. Balubaid, M. Shuaib, J.K. Asamoah, & A. Ali, Motile micro-organism based trihybrid nanofluid flow with an application of magnetic effect across a slender stretching sheet: Numerical approach. AIP Advances, 13(3) (2023) 035237.
DOI: 10.1063/5.0144191
Google Scholar
[15]
K. Jat, K. Sharma, & O.D. Makinde, Novel features of radiating hybrid nanofluid flow past a nonlinear stretchable porous sheet with different nanoparticles shape. Numer. Heat Transf. B: Fundam., 0 (2024) 1-25.
DOI: 10.1080/10407790.2024.2386584
Google Scholar
[16]
T. Gul & A. Saeed, Nonlinear mixed convection couple stress tri-hybrid nanofluids flow in a Darcy–Forchheimer porous medium over a nonlinear stretching surface. Waves Random Complex Media., 35(4) (2025) 6365-6382.
DOI: 10.1080/17455030.2022.2077471
Google Scholar
[17]
A.M. Obalalu, E.O. Fatunmbi, M.M. Alam, A. Abbas, U. Khan, A. Adekoya-Olowofela, E.S.M. Sherif, Y. Yilmaz, Influence of thermal radiation and electromagnetic characteristics of micropolar ternary hybrid nanofluid flow over a slender surface. J Radiat Res Appl Sci., 18(1) (2025) 101268.
DOI: 10.1016/j.jrras.2024.101268
Google Scholar
[18]
E.O. Fatunmbi & S.O. Salawu, Analysis of entropy generation in hydromagnetic micropolar fluid flow over an inclined nonlinear permeable stretching sheet with variable viscosity. J. Appl. Comput. Mech., 6(SI) (2020) 1301-1313.
DOI: 10.4028/www.scientific.net/df.26.63
Google Scholar
[19]
Z. Shah, P. Kumam, & W. Deebani, Radiative MHD Casson Nanofluid Flow with Activation energy and chemical reaction over past nonlinearly stretching surface through Entropy generation. Sci. Rep., 10(1) (2020) 4402.
DOI: 10.1038/s41598-020-61125-9
Google Scholar
[20]
E.O. Fatunmbi & S.O. Salawu, Analysis of hydromagnetic micropolar nanofluid flow past a nonlinear stretchable sheet and entropy generation with Navier slips. Int. J. Model. Simul., 42(3) (2022) 359-369.
DOI: 10.1080/02286203.2021.1905490
Google Scholar
[21]
S. Salawu, H. Ogunseye, T. Yusuf, R. Lebelo, & R. Mustapha, Entropy generation in a magnetohydrodynamic hybrid nanofluid flow over a nonlinear permeable surface with velocity slip effect. WSEAS Trans. Fluid Mech, 18 (2023) 34-48.
DOI: 10.37394/232013.2023.18.4
Google Scholar
[22]
P.S.S. Nagalakshmi, Implementation of Particle Swarm Optimization Algorithm on Entropy Generation of Carreau Nanofluid Flow Embedded with Carbon Nanotubes Over a Non Linear Stretching Sheet. J. Nanofluids., 13(6) (2024) 1318-1328.
DOI: 10.1166/jon.2024.2212
Google Scholar
[23]
T. Gubena & W. Ibrahim, Mixed convection flow of Casson nanofluid over a nonlinearly stretching sheet with entropy generation, non-Fourier heat flux, and non-Fickian mass diffusion. AIP Adv., 15(3) (2025) 035329.
DOI: 10.1063/5.0254250
Google Scholar
[24]
M.T. Akolade, A.S. Idowu, & A.T. Adeosun, Multislip and Soret–Dufour influence on nonlinear convection flow of MHD dissipative casson fluid over a slendering stretching sheet with generalized heat flux phenomenon. Heat transfer, 50(4) (2021) 3913-3933.
DOI: 10.1002/htj.22057
Google Scholar
[25]
M.M. Biswal, K. Swain, G.C. Dash, & K. Ojha, Study of radiative magneto-non-Newtonian fluid flow over a nonlinearly elongating sheet with Soret and Dufour effects. Num. Heat Transf. A-Appl., 83(4) (2023) 331-342.
DOI: 10.1080/10407782.2022.2091379
Google Scholar
[26]
P.R. Sekhar, S. Sreedhar, S.M. Ibrahim, & P.V. Kumar, Radiative heat source fluid flow of MHD Casson nanofluid over a non-linear inclined surface with Soret and Dufour effects. CFD Letters, 15(7) (2023) 42-60.
DOI: 10.37934/cfdl.15.7.4260
Google Scholar
[27]
R.M. Kumar, R.S. Raju, F. Mebarek-Oudina, M.A. Kumar, & V.K. Narla, Cross-diffusion effects on an MHD Williamson nanofluid flow past a nonlinear stretching sheet immersed in a permeable medium. Front. Heat Mass Transf., 22(1) (2024) 15-34.
DOI: 10.32604/fhmt.2024.048045
Google Scholar
[28]
S.M. Hussain, N. Aamir, M.A. Qureshi, N.Z. Khan, M. Haroon, W. Jamshed, & M. Bayram, Significance of Soret and Dufour effects on the flow of non-Newtonian fluid past over a slendering stretchable surface with multiple slip conditions: A thermodynamics investigation. Proc. Inst. Mech. Eng.: J. Nan.,. 0 (2025) 23977914251342074.
DOI: 10.1177/23977914251342074
Google Scholar
[29]
D. Qaiser, Z. Zheng, M.R. Khan, Numerical assessment of mixed convection flow of Walters-B nanofluid over a stretching surface with Newtonian heating and mass transfer. Therm. Sci. Eng. Prog., 22 (2021) 100801.
DOI: 10.1016/j.tsep.2020.100801
Google Scholar
[30]
H. Basha, S. Ballem, G. Janardhana Reddy, H. Holla, M.A. Sheremet, Buoyancy‐motivated dissipative free convection flow of Walters‐B fluid along a stretching sheet under the Soret effect and Lorentz force influence. Heat Transfer, 51(4) (2022) 3512-3539.
DOI: 10.1002/htj.22461
Google Scholar
[31]
N.S. Khan, A. Hussanan, W. Kumam, P. Kumam, P. Suttiarporn, Accessing the thermodynamics of Walter‐B fluid with magnetic dipole effect past a curved stretching surface. Z. angew. Math. Mech., 103(8) (2023) e202100112.
DOI: 10.1002/zamm.202100112
Google Scholar
[32]
G. Saini, B.N. Hanumagowda, S.S.K. Raju, S.V.K. Varma, Nonlinear heat radiation and mass transfer characteristics on MHD Walters' B fluid flow through a porous medium over a stretching sheet. Part. Differ. Equ. Appl. Math., 10 (2024) 100699.
DOI: 10.1016/j.padiff.2024.100699
Google Scholar
[33]
M. Shaheen, H. Ullah, M. Fiza, A.U. Jan, A. Akgül, A.S. Hendy, S. Elaissi, I. Khan, M. Bakhori, N.F.M. Noor, Radiation and gyrotactic microorganisms in Walter-B nanofluid flow over a stretching sheet. J. Radiat. Res. Appl. Sci., 18(3) (2025) 101644.
DOI: 10.1016/j.jrras.2025.101644
Google Scholar
[34]
T. Hayat, S. Qayyum, A. Alsaedi, B. Ahmad, Magnetohydrodynamic (MHD) nonlinear convective flow of Walters-B nanofluid over a nonlinear stretching sheet with variable thickness. Int. J. Heat Mass Transf., 110 (2017) 506-514.
DOI: 10.1016/j.ijheatmasstransfer.2017.02.082
Google Scholar
[35]
K. Guedri, A. Khan, N. Sene, Z. Raizah, A. Saeed, A.M. Galal, Thermal flow for radiative ternary hybrid nanofluid over nonlinear stretching sheet subject to Darcy–Forchheimer phenomenon. Math. Probl. Eng., 2022(1) (2022) 3429439.
DOI: 10.1155/2022/3429439
Google Scholar
[36]
N.A. Khan, F. Riaz, N.A. Khan, Heat transfer analysis for couple stress fluid over a nonlinearly stretching sheet. Nonlinear Eng., 2 (2013) 121-127.
DOI: 10.1515/nleng-2013-0014
Google Scholar
[37]
D. Pal, H. Mondal, MHD non-Darcian mixed convection heat and mass transfer over a non-linear stretching sheet with Soret–Dufour effects and chemical reaction. Int. Commun. Heat Mass Transf., 38(4) (2011) 463-467.
DOI: 10.1016/j.icheatmasstransfer.2010.12.039
Google Scholar
[38]
A.A. Faridi, N. Khan, K. Ali, A novel numerical note on the enhanced thermal features of water-ethylene glycol mixture due to hybrid nanoparticles (MnZnFe2O4–Ag) over a magnetized stretching surface. Numer. Heat Transf. B, 86(4) (2025) 804-826.
DOI: 10.1080/10407790.2023.2296082
Google Scholar
[39]
M. Ramzan, P. Kumam, S.A. Lone, T. Seangwattana, A. Saeed, A.M. Galal, A theoretical analysis of the ternary hybrid nanofluid flows over a non-isothermal and non-isosolutal multiple geometries. Heliyon, 9(4) (2023) e14875.
DOI: 10.1016/j.heliyon.2023.e14875
Google Scholar
[40]
E.A. Algehyne, A. Al-Bossly, F.S. Alduais, M.Y. Almusawa, A. Saeed, Significance of the inclined magnetic field on the water-based hybrid nanofluid flow over a nonlinear stretching sheet. Nanotechnology, 34, 21 (2023), 215401.
DOI: 10.1088/1361-6528/acbda1
Google Scholar
[41]
G. Kathyayani, S.S. Nagendra Rao, Influence of couple stress, radiation, and activation energy on MHD flow and entropy generation in Maxwell hybrid nanofluid flow over a flat plate. Proc. Inst. Mech. Eng., Part E or simply Proc. Inst. Mech. E., 0(0) (2024) 09544089241286741.
DOI: 10.1177/09544089241286741
Google Scholar
[42]
P. Priyadharshini, M.V. Archana, N.A. Shah, & M.H. Alshehri, Ternary hybrid nanofluid flow emerging on a symmetrically stretching sheet optimization with machine learning prediction scheme. Symmetry, 15(6) (2023) 1225.
DOI: 10.3390/sym15061225
Google Scholar