Machine Learning Prediction of Skin Friction and Heat Transfer in Walter-B Ternary Nanofluid Flow with Cross-Diffusion and Entropy Generation

Article Preview

Abstract:

This study investigates the steady magnetohydrodynamic flow of the Walter-B ternary nanofluid (composed of water-ethylene glycol (WEG) base fluid with graphene, alumina, and titanium dioxide nanoparticles) over a nonlinear stretching sheet, incorporating the effects of cross-diffusion, couple stress, and viscous dissipation. Using similarity transformations, the governing equations are converted to ordinary differential equations and solved numerically with MATLAB's bvp4c solver. A Bayesian-regularized artificial neural network (BRANN) is developed to predict skin friction, Nusselt, and Sherwood numbers with R² > 0.99 accuracy. Results reveal that fluid velocity decreases with increasing couple stress but enhances with the Deborah number and Darcy parameter, while temperature rises with the Eckert and Dufour numbers. Concentration profiles decline with chemical reaction but grow with the Soret number. Entropy generation intensifies with Brinkman and Biot numbers, whereas the Bejan number shows opposite behavior. Empirical correlations for skin friction, Nusselt, and Sherwood numbers are developed, showing a 6.3% rise in skin friction with the Forchheimer number and a 13.14% improvement in heat transfer with thermal radiation. This work provides critical insights for thermal management systems, leveraging machine learning to optimize ternary nanofluid flows in porous media under cross-diffusion effects.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

175-206

Citation:

Online since:

February 2026

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2026 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M.H. Matin, M. Dehsara, & A. Abbassi, Mixed convection MHD flow of nanofluid over a non-linear stretching sheet with effects of viscous dissipation and variable magnetic field. Mechanics, 18(4) (2012) 415-423.

DOI: 10.5755/j01.mech.18.4.2334

Google Scholar

[2] T. Hayat, Z. Hussain, A. Alsaedi, & S. Asghar, Carbon nanotubes effects in the stagnation point flow towards a nonlinear stretching sheet with variable thickness. Adv. Powder Technol., 27(4) (2016) 1677-1688.

DOI: 10.1016/j.apt.2016.06.001

Google Scholar

[3] B.C. Prasannakumara, N.S. Shashikumar, & P. Venkatesh, Boundary layer flow and heat transfer of fluid particle suspension with nanoparticles over a nonlinear stretching sheet embedded in a porous medium. Nonlinear Engineering, 6(3) (2017) 179-190.

DOI: 10.1515/nleng-2017-0004

Google Scholar

[4] A.B. Jafar, S. Shafie, & I. Ullah, MHD radiative nanofluid flow induced by a nonlinear stretching sheet in a porous medium. Heliyon, 6(6) (2020) e04201.

DOI: 10.1016/j.heliyon.2020.e04201

Google Scholar

[5] S.R. Mishra, P. Mathur, & H.M. Ali, Analysis of homogeneous–heterogeneous reactions in a micropolar nanofluid past a nonlinear stretching surface: semi-analytical approach. J. Therm. Anal. Calorim,, 144(6) (2021) 2247-2257.

DOI: 10.1007/s10973-020-10414-6

Google Scholar

[6] K. Jabeen, M. Mushtaq, & R.M.A. Muntazir, Analysis of magnetic and non-magnetic nanoparticles with Newtonian/non-Newtonian base fluids over a nonlinear stretching sheet. Proc. Inst. Mech. Eng. C and P I MECH ENG C-J MEC., 237(19) (2023) 4439-4453.

DOI: 10.1177/09544062221103697

Google Scholar

[7] B.J. Gireesha, C.G. Pavithra, & Sushma, Impact of new similarity transformation on analysis of nanoparticle shape effects on Casson nanofluid flow and heat transfer over a nonlinear stretching sheet with radiation. Int. J. Model. Simul., 0 (2024) 1-32.

DOI: 10.1080/02286203.2024.2394776

Google Scholar

[8] S. Manjunatha, J.S. Kumar, & S.V.K. Varma, Impacts of heat generation and Buoyancy forces on hyperbolic Tangent Magneto ferrofluid flow with Darcy–Forchheimer model over a nonlinear stretching sheet: RSM analysis. Eur. Phys. J. Plus., 140(6) (2025) 577.

DOI: 10.1140/epjp/s13360-025-06477-9

Google Scholar

[9] I. Tlili, H.A. Nabwey, G.P. Ashwinkumar, & N. Sandeep, 3-D magnetohydrodynamic AA7072-AA7075/methanol hybrid nanofluid flow above an uneven thickness surface with slip effect. Sci. Rep., 10(1) (2020) 4265.

DOI: 10.1038/s41598-020-61215-8

Google Scholar

[10] K. Das, S.S. Giri, & P.K. Kundu, Influence of Hall current effect on hybrid nanofluid flow over a slender stretching sheet with zero nanoparticle flux. Heat Transfer, 50(7) (2021) 7232-7250.

DOI: 10.1002/htj.22226

Google Scholar

[11] N. Hameed, S. Noeiaghdam, W. Khan, B. Pimpunchat, U. Fernandez-Gamiz, M.S. Khan, & A. Rehman, Analytical analysis of the magnetic field, heat generation and absorption, viscous dissipation on couple stress casson hybrid nano fluid over a nonlinear stretching surface. Results Eng., 16 (2022) 100601.

DOI: 10.1016/j.rineng.2022.100601

Google Scholar

[12] K. Guedri, A. Khan, N. Sene, Z. Raizah, A. Saeed, & A.M. Galal, Thermal flow for radiative ternary hybrid nanofluid over nonlinear stretching sheet subject to Darcy–Forchheimer phenomenon. Math. Probl. Eng., 2022(1) (2022) 3429439.

DOI: 10.1155/2022/3429439

Google Scholar

[13] J. Hasnain & N. Abid, Numerical investigation for thermal growth in water and engine oil-based ternary nanofluid using three different shaped nanoparticles over a linear and nonlinear stretching sheet. Numer. Heat Transf.; A: Appl., 83(12) (2023) 1365-1376.

DOI: 10.1080/10407782.2022.2104582

Google Scholar

[14] F.A.A. Elsebaee, M. Bilal, S.R. Mahmoud, M. Balubaid, M. Shuaib, J.K. Asamoah, & A. Ali, Motile micro-organism based trihybrid nanofluid flow with an application of magnetic effect across a slender stretching sheet: Numerical approach. AIP Advances, 13(3) (2023) 035237.

DOI: 10.1063/5.0144191

Google Scholar

[15] K. Jat, K. Sharma, & O.D. Makinde, Novel features of radiating hybrid nanofluid flow past a nonlinear stretchable porous sheet with different nanoparticles shape. Numer. Heat Transf. B: Fundam., 0 (2024) 1-25.

DOI: 10.1080/10407790.2024.2386584

Google Scholar

[16] T. Gul & A. Saeed, Nonlinear mixed convection couple stress tri-hybrid nanofluids flow in a Darcy–Forchheimer porous medium over a nonlinear stretching surface. Waves Random Complex Media., 35(4) (2025) 6365-6382.

DOI: 10.1080/17455030.2022.2077471

Google Scholar

[17] A.M. Obalalu, E.O. Fatunmbi, M.M. Alam, A. Abbas, U. Khan, A. Adekoya-Olowofela, E.S.M. Sherif, Y. Yilmaz, Influence of thermal radiation and electromagnetic characteristics of micropolar ternary hybrid nanofluid flow over a slender surface. J Radiat Res Appl Sci., 18(1) (2025) 101268.

DOI: 10.1016/j.jrras.2024.101268

Google Scholar

[18] E.O. Fatunmbi & S.O. Salawu, Analysis of entropy generation in hydromagnetic micropolar fluid flow over an inclined nonlinear permeable stretching sheet with variable viscosity. J. Appl. Comput. Mech., 6(SI) (2020) 1301-1313.

DOI: 10.4028/www.scientific.net/df.26.63

Google Scholar

[19] Z. Shah, P. Kumam, & W. Deebani, Radiative MHD Casson Nanofluid Flow with Activation energy and chemical reaction over past nonlinearly stretching surface through Entropy generation. Sci. Rep., 10(1) (2020) 4402.

DOI: 10.1038/s41598-020-61125-9

Google Scholar

[20] E.O. Fatunmbi & S.O. Salawu, Analysis of hydromagnetic micropolar nanofluid flow past a nonlinear stretchable sheet and entropy generation with Navier slips. Int. J. Model. Simul., 42(3) (2022) 359-369.

DOI: 10.1080/02286203.2021.1905490

Google Scholar

[21] S. Salawu, H. Ogunseye, T. Yusuf, R. Lebelo, & R. Mustapha, Entropy generation in a magnetohydrodynamic hybrid nanofluid flow over a nonlinear permeable surface with velocity slip effect. WSEAS Trans. Fluid Mech, 18 (2023) 34-48.

DOI: 10.37394/232013.2023.18.4

Google Scholar

[22] P.S.S. Nagalakshmi, Implementation of Particle Swarm Optimization Algorithm on Entropy Generation of Carreau Nanofluid Flow Embedded with Carbon Nanotubes Over a Non Linear Stretching Sheet. J. Nanofluids., 13(6) (2024) 1318-1328.

DOI: 10.1166/jon.2024.2212

Google Scholar

[23] T. Gubena & W. Ibrahim, Mixed convection flow of Casson nanofluid over a nonlinearly stretching sheet with entropy generation, non-Fourier heat flux, and non-Fickian mass diffusion. AIP Adv., 15(3) (2025) 035329.

DOI: 10.1063/5.0254250

Google Scholar

[24] M.T. Akolade, A.S. Idowu, & A.T. Adeosun, Multislip and Soret–Dufour influence on nonlinear convection flow of MHD dissipative casson fluid over a slendering stretching sheet with generalized heat flux phenomenon. Heat transfer, 50(4) (2021) 3913-3933.

DOI: 10.1002/htj.22057

Google Scholar

[25] M.M. Biswal, K. Swain, G.C. Dash, & K. Ojha, Study of radiative magneto-non-Newtonian fluid flow over a nonlinearly elongating sheet with Soret and Dufour effects. Num. Heat Transf. A-Appl., 83(4) (2023) 331-342.

DOI: 10.1080/10407782.2022.2091379

Google Scholar

[26] P.R. Sekhar, S. Sreedhar, S.M. Ibrahim, & P.V. Kumar, Radiative heat source fluid flow of MHD Casson nanofluid over a non-linear inclined surface with Soret and Dufour effects. CFD Letters, 15(7) (2023) 42-60.

DOI: 10.37934/cfdl.15.7.4260

Google Scholar

[27] R.M. Kumar, R.S. Raju, F. Mebarek-Oudina, M.A. Kumar, & V.K. Narla, Cross-diffusion effects on an MHD Williamson nanofluid flow past a nonlinear stretching sheet immersed in a permeable medium. Front. Heat Mass Transf., 22(1) (2024) 15-34.

DOI: 10.32604/fhmt.2024.048045

Google Scholar

[28] S.M. Hussain, N. Aamir, M.A. Qureshi, N.Z. Khan, M. Haroon, W. Jamshed, & M. Bayram, Significance of Soret and Dufour effects on the flow of non-Newtonian fluid past over a slendering stretchable surface with multiple slip conditions: A thermodynamics investigation. Proc. Inst. Mech. Eng.: J. Nan.,. 0 (2025) 23977914251342074.

DOI: 10.1177/23977914251342074

Google Scholar

[29] D. Qaiser, Z. Zheng, M.R. Khan, Numerical assessment of mixed convection flow of Walters-B nanofluid over a stretching surface with Newtonian heating and mass transfer. Therm. Sci. Eng. Prog., 22 (2021) 100801.

DOI: 10.1016/j.tsep.2020.100801

Google Scholar

[30] H. Basha, S. Ballem, G. Janardhana Reddy, H. Holla, M.A. Sheremet, Buoyancy‐motivated dissipative free convection flow of Walters‐B fluid along a stretching sheet under the Soret effect and Lorentz force influence. Heat Transfer, 51(4) (2022) 3512-3539.

DOI: 10.1002/htj.22461

Google Scholar

[31] N.S. Khan, A. Hussanan, W. Kumam, P. Kumam, P. Suttiarporn, Accessing the thermodynamics of Walter‐B fluid with magnetic dipole effect past a curved stretching surface. Z. angew. Math. Mech., 103(8) (2023) e202100112.

DOI: 10.1002/zamm.202100112

Google Scholar

[32] G. Saini, B.N. Hanumagowda, S.S.K. Raju, S.V.K. Varma, Nonlinear heat radiation and mass transfer characteristics on MHD Walters' B fluid flow through a porous medium over a stretching sheet. Part. Differ. Equ. Appl. Math., 10 (2024) 100699.

DOI: 10.1016/j.padiff.2024.100699

Google Scholar

[33] M. Shaheen, H. Ullah, M. Fiza, A.U. Jan, A. Akgül, A.S. Hendy, S. Elaissi, I. Khan, M. Bakhori, N.F.M. Noor, Radiation and gyrotactic microorganisms in Walter-B nanofluid flow over a stretching sheet. J. Radiat. Res. Appl. Sci., 18(3) (2025) 101644.

DOI: 10.1016/j.jrras.2025.101644

Google Scholar

[34] T. Hayat, S. Qayyum, A. Alsaedi, B. Ahmad, Magnetohydrodynamic (MHD) nonlinear convective flow of Walters-B nanofluid over a nonlinear stretching sheet with variable thickness. Int. J. Heat Mass Transf., 110 (2017) 506-514.

DOI: 10.1016/j.ijheatmasstransfer.2017.02.082

Google Scholar

[35] K. Guedri, A. Khan, N. Sene, Z. Raizah, A. Saeed, A.M. Galal, Thermal flow for radiative ternary hybrid nanofluid over nonlinear stretching sheet subject to Darcy–Forchheimer phenomenon. Math. Probl. Eng., 2022(1) (2022) 3429439.

DOI: 10.1155/2022/3429439

Google Scholar

[36] N.A. Khan, F. Riaz, N.A. Khan, Heat transfer analysis for couple stress fluid over a nonlinearly stretching sheet. Nonlinear Eng., 2 (2013) 121-127.

DOI: 10.1515/nleng-2013-0014

Google Scholar

[37] D. Pal, H. Mondal, MHD non-Darcian mixed convection heat and mass transfer over a non-linear stretching sheet with Soret–Dufour effects and chemical reaction. Int. Commun. Heat Mass Transf., 38(4) (2011) 463-467.

DOI: 10.1016/j.icheatmasstransfer.2010.12.039

Google Scholar

[38] A.A. Faridi, N. Khan, K. Ali, A novel numerical note on the enhanced thermal features of water-ethylene glycol mixture due to hybrid nanoparticles (MnZnFe2O4–Ag) over a magnetized stretching surface. Numer. Heat Transf. B, 86(4) (2025) 804-826.

DOI: 10.1080/10407790.2023.2296082

Google Scholar

[39] M. Ramzan, P. Kumam, S.A. Lone, T. Seangwattana, A. Saeed, A.M. Galal, A theoretical analysis of the ternary hybrid nanofluid flows over a non-isothermal and non-isosolutal multiple geometries. Heliyon, 9(4) (2023) e14875.

DOI: 10.1016/j.heliyon.2023.e14875

Google Scholar

[40] E.A. Algehyne, A. Al-Bossly, F.S. Alduais, M.Y. Almusawa, A. Saeed, Significance of the inclined magnetic field on the water-based hybrid nanofluid flow over a nonlinear stretching sheet. Nanotechnology, 34, 21 (2023), 215401.

DOI: 10.1088/1361-6528/acbda1

Google Scholar

[41] G. Kathyayani, S.S. Nagendra Rao, Influence of couple stress, radiation, and activation energy on MHD flow and entropy generation in Maxwell hybrid nanofluid flow over a flat plate. Proc. Inst. Mech. Eng., Part E or simply Proc. Inst. Mech. E., 0(0) (2024) 09544089241286741.

DOI: 10.1177/09544089241286741

Google Scholar

[42] P. Priyadharshini, M.V. Archana, N.A. Shah, & M.H. Alshehri, Ternary hybrid nanofluid flow emerging on a symmetrically stretching sheet optimization with machine learning prediction scheme. Symmetry, 15(6) (2023) 1225.

DOI: 10.3390/sym15061225

Google Scholar