Phase Stability, Structure and Thermodynamics of Modified Ni- and Fe-Aluminides

Abstract:

Article Preview

The Ni-aluminides are integral constituents of thermal barrier coatings applied over Ni-based superalloys. These aluminides provide oxidation-resistance by forming a protective α–Al2O3 surface layer. The Pt-modified β–NiAl bond coat has been developed with an impetus to increase the service-life of Ni-based superalloys. The Pt-modified β–NiAl bond coat significantly improves the oxidation-resistance of superalloys. An interdiffusion zone containing topologically closed packed phases develops at the bond coat/superalloy interface. This eventually leads to Al-lean γ′–Ni3Al transformation, whose oxidation resistance is inferior to that of β–NiAl. The Pt-group metals Ir and Ru delay this transformation and impart creep-resistance to the bond coat. Recent investigations demonstrate that alloying with transition metals such as Cr, Mo and Fe enhance the mechanical strength. The functional stability of bond coat-superalloy assembly counts on the interfacial reaction and associated local structural variations which is a function of bond coat composition. This chapter elucidates the effect of various alloying elements on phase constitutions, crystallographic structural stability and thermodynamics of Ni-and Fe-aluminides to engineer a prospective bond coat.

Info:

Periodical:

Diffusion Foundations (Volume 13)

Edited by:

Prof. Aloke Paul

Pages:

1-55

Citation:

S. Santra, "Phase Stability, Structure and Thermodynamics of Modified Ni- and Fe-Aluminides", Diffusion Foundations, Vol. 13, pp. 1-55, 2017

Online since:

November 2017

Authors:

Export:

Price:

$38.00

* - Corresponding Author

[1] K. A. Marino, B. Hinnemann and E. A. Carter, PNAS 108 (2011) 5480-5487.

[2] G. H. Meier and F. S. Petit, Mater. Sci. Eng. A 153 (1992) 548-560.

[3] H. J. Kim and M. E. Walter, Mater. Sci. Eng. A 360 (2003) 7-17.

[4] P. Kiruthika, S. K. Makineni, C. Srivastava, K. Chattopadhyay and A. Paul, Acta Materialia, 105 (2016) 438-448.

[5] D. R. Clarke and C. G. Levi, Annu. Rev. Mater. Res. 33 (2003) 383-417.

[6] V. K. Tolpygo and D. R. Clarke, Acta Mater. 48 (2000) 3283-3622.

[7] G. Fisher, M. Y. Chan, P. K. Datta and J. S. Burnell-Gray, Platinum Met. Rev. 43(2) (1999) 59-61.

[8] F. Wu, H. Murakami and H. Harada, Mater. Trans. 44 (2003) 1675-1678.

[9] Z. Zhang, B. Bai, H. Peng. S. Gong and H. Guo, Mater. Design 88 (2015) 667-674.

[10] R. D. Field, D. F. Lahrman and R. Darolia, Acta Metall. Mater. 39 (1991) 2961-2969.

[11] R. Darolia, D. F. Lahrman and R. D. Field, Scr. Mater. 26 (1992) 1007-1012.

[12] C. Leyens, B. A. Pint and I. G. Wright, Surf. Coat. Technol. 133-134 (2000) 15-22.

[13] J. D. Cotton and R. D. Noebe, Intermet. 1 (1993) 3-20.

[14] L. Kaufman and H. Nesor, CALPHAD 2 (1978) 325-348.

[15] H. Okamoto, J. Phase Equilibria 14 (1993) 257-259.

[16] I. Ansara, B. Sundman and P. Willemin, Acta Metall. 36 (1988) 977-982.

[17] Y. Du and N. Claveguera, J. Alloys Compd. 237 (1996) 20-32.

[18] I. Ansara, N. Dupin, H. L. Lukas and B. Sundman, J. Alloys Compd. 247 (1997) 20-30.

[19] W. Huang and Y. A. Chang, Intermet. 6 (1998) 487-498.

[20] N. Dupin, I. Ansara and B. Sundman, CALPHAD 25 (2001) 279-298.

[21] H. –L. Chen, E. Doernberg, p. Svoboda and R. Schmid-Fetzer, Thermochim. Acta 512 (2011) 189-195.

[22] R. Hu and P. Nash, J. Mater. Sci. 41 (2006) 631-641.

[23] W. Oelsen and W. Middel, Mitt. Kaiser-Wilhelm-Inst. Eisenforsch, Dusseldorf 19 (1937) 1-26.

[24] F. Z. Chrifi-Alaoui, M. Nassik, K. Mahdouk and J. C. Gachon, J. Alloys compd. 364 (2004) 121-126.

DOI: https://doi.org/10.1016/s0925-8388(03)00493-6

[25] Eth. Henig and H. L. Lukas, Z. Metall. 66 (1975) 98-108.

[26] K. Rzyman and Z. Moser, Prog. Mater. Sci. 49 (2004) 581-606.

[27] O. Kubaschewski, Trans. Faraday Soc. 54 (1958) 814-820.

[28] P. M. Robinson and M. B. Bever, Thermodynamic properties in: Intermetallic compounds, ed. J. H. Westbrook, John Wiley and Sons, Inc. New York, (1967).

[29] R. Hu, H-N. Su and P. Nash, Pure Appl. Chem. 79 (2007) 1653-1673.

[30] C. L. Fu, Y. –Y. Ye, M. H. Yu and K. M. Ho, Phys. Rev. B 48 (1993) 6712-6715.

[31] A. J. Bradley and A. Taylor, Proc. R. Soc. London, Ser. A 159 (1937) 56-72.

[32] C. Jiang, D. J. Sordelet and B. Gleeson, Acta Mater. 54 (2006) 1147-1154.

[33] C. L. Fu and G. S. Painter, Acta Mater. 45 (1997) 481-488.

[34] A. V. Ruban, V. V. Popov, V. K. Portnoi and V. I. Bogdanov, Phil. Mag. 94 (2014) 20-34.

[35] K. Badura and H.E. Schaefer. Phys. Rev. B 56 (6) (1997) 3032-3037.

[36] K. Rzyman, Z. Moser, R.E. Watson, M. Weinert. J. Phase Equilib. 17 (3) (1996) 173-178.

[37] F. Gao, D. J. Bacon and G. J. Ackland, Phil. Mag. A 67 (1993) 275-288.

[38] K. A. Marino and E. A. Carter, Acta Mater. 56 (2008) 3502-3510.

[39] V. Baheti, S. Islam, P. Kumar, R. Ravi, R. Narayanan, D. Hongqun, V. Vuorinen, T. Laurila, A. Paul, Philos. Mag. 96 (2016) 15–30.

[40] V. D. Divya, U. Ramamurty and A. Paul, Phil. Mag. 92 (2012) 2187-2214.

[41] S. Santra, S. K. Makineni, S. Suwas, K. Chattopadhyay and A. Paul, Mater. Des. 110 (2016) 404-413.

[42] L. Bencze, D. D. Raj, D. Kath, W. A. Oates, L. Singheiser and K. Hilpert, Metal. Mater. Trans. B 35B (2004) 867-876.

[43] T. Ikeda, A. Almazouz, H. Numakura, M. Koiwa, W. Sprengel and H. Nakajima, Acta Mater. 46 (1998) 5369-5376.

[44] A. Paul, A. A. Kodentsov and F. J. J. van Loo, J. Alloys and Compds. 403 (2005) 147-153.

[45] X. L. Liu, G. Lindwall, R. Otis, H. Kim and Z-K. Liu, CALPHAD 55 (2016) 88-102.

[46] C. Zhang, J. Zhu, A. Bengtson, D. Morgan, F. Zhang, W. -S. Cao and Y. A. Chang, Acta Mater. 56 (2008) 2576-2584.

[47] J. Zhu, C. Zhang, W. Cao, Y. Yang, F. Zhang, S. Chen, D. Morgan and Y. A. Chang, Acta Mater. 57 (2009) 202-212.

[48] B. Grushko, D. Kapush, V. Konoval and V. Shemet, Powder Metall. Metal Ceramics 50 (2011) 462-470.

[49] M. R. Jackson and J. R. Rairden, Metall. Trans. A 8 (1977) 1697-1707.

[50] S. Hayashi, S. I. Ford, D. J. Young, D. J. Sordelet, M. F. Besser and B. Gleeson, Acta Mater. 53 (2005) 3319-3328.

[51] B. Gleeson, W. Wang, S. Hayashi and D.J. Sordelet, Mater. Sci. Forum 461–464 (2004) 213-222.

[52] J. L. Kamm and W. W. Milligan, Scr. Metall. Mater. 31 (1994) 1461-1464.

[53] E. Copland, J. Phase Equilibria Diffus. 28 (2007) 38-48.

[54] H. Meininger and M. Ellner, J. Alloys Compd. 353 (2003) 207-212.

[55] X-G. Lu, B. Sundman and J. Ågren, CALPHAD 33 (2009) 450-456.

[56] W. Gong, L. Zhang, H. Wei and C. Zhou, Prog. Nat. Sci.: Mater. Inter. 21 (2011) 221-226.

[57] A. J. McAlister and D. J. Kahan, Bull. Alloy Phase Diagr. 7 (1986) 47-51.

[58] J. Zhu, C. Zhang, D. Ballard, P. Martin, J. Fournelle, W. Cao and Y. A. Chang, Acta Mater. 58 (2010) 180-188.

[59] B. Grushko and D. Kapush, J. Alloys Compd. 594 (2014) 127-132.

[60] B. Grushko, D. Kapush and L. Meshi, J. Alloys Compd. 514 (2012) 60-63.

[61] F. R. Lamastra, I. Cacciotti, A. Bellucci and F. Nanni, Intermet. 22 (2012) 241-250.

[62] Y. Yamabe-Mitarai, H. Aoki, P. J. Hill and H. Harada, Scripta Mater. 48 (2003) 565-570.

[63] F. Wu, H. Murakami and A. Suzuki, Surf. Coat. Technol. 168 (2003) 62-69.

[64] Y. Yamabe-Mitarai, T. Aoyagi, K. Nishida, H. Aoki, T. Abe and H. Murakami, Intermet. 15 (2007) 479-488.

[65] M. Ode, T. Abe and H. Murakami, private communication.

[66] C. Zhang, J. Zhu, A. Bengtson, D. Morgan, F. Zhang, W. -S. Cao and Y. A. Chang, Acta Mater. 56 (2008) 2576-2584.

[67] C. Jiang and B. Gleeson, Acta Mater. 54 (2006) 4101-4110.

[68] D. Kapush, T. Y. Velikanova and B. Grushko, J. Alloys Compd. 497 (2010) 105-109.

[69] B. Tryon, F. Cao, K. S. Murphy, C. G. Levi and T. M. Pollock, JOM (2006) 53-59.

[70] S. Chakravorty and D. R.F. West, J. Mater. Sci. 21 (1986) 2721-2730.

[71] B. Tryon and T. M. Pollock, Mater. Sci. Eng. A 430 (2006) 266-276.

[72] S. Chakravorty and D. R.F. West, Scr. Metall. 19 (1985) 1355-1360.

[73] I. Vjunitsky, E. Schönfeld, T. Kaiser, W. Steurer and V. Shklover, Intermet. 13 (2005) 35-45.

[74] J. Zhu, C. Zhang, W. Cao, Y. Yang, F. Zhang, S. Chen, D. Morgan and Y. A. Chang, Acta Mater. 57 (2009) 202-212.

[75] V. F. Tsurikov, E. M. Sokolovskaya, E. F. Kazakova, Vestnik Moskovskogo Universiteta 35 (1980) 512-514.

[76] A. S. Harte, P. M. Hung, I. J. Horner, N. Hall, L. A. Cornish and M. J. Witcomb, Adv. X-Ray Anal. 39 (1997) 747-754.

[77] K. N. Kulkarni, B. Tryon, T. M. Pollock and M. A. Dayananda, J. Phase Equilib. Diff. 28 (2007) 503-509.

[78] I. J. Horner, N. Hall, L. A. Cornish, M. J. Witcomb, M. B. Cortie and T. D. Boniface, J. Alloys Compd. 264 (1998) 173-179.

[79] H. N. Su and P. Nash, J. Alloy Compd. 403 (2005) 217-222.

[80] S. Prins, R. Arroyave and Z-K. Liu, Acta Mater. 55 (2007) 4781-4787.

[81] S. Hallström, D. Andersson, A. Ruban and J. Ågren, Acta Mater. 56 (2008) 4062-4069.

[82] R. D. Noebe, R. R. Bowman and M. V. Nathal, Review of the Physical and Mechanical properties and potential applications of the B2 compound NiAl, NASA Technical Memorandum 105598, (1992).

[83] S. Mi, B. Grushko, C. Dong and K. Urban, J. Alloys Compd. 359 (2003) 193-197.

[84] S. Mi, B. Grushko, C. Dong and K. Urban, J. Non-Cryst. Solid. 334&335 (2004) 214-217.

[85] S. J. Hong, G. H. Hwang, W. K. Han and S. G. Kang, Intermet. 17 (2009) 381-386.

[86] G. Cacciamani, A. Dinsdale, M. Palumbo and A. Pasturel, Intermet. 18 (2010) 1148-1162.

[87] P. E. A. Turchi, L. Kaufman and Z. K. Liu, CALPHAD 30 (2006) 70-87.

[88] Y. Wang and G. Cacciamani, J. Alloys Compd. 688 (2016) 422-435.

[89] S.H. Zhou, Y. Wang, C. Jiang, J.Z. Zhu, L.Q. Chen, Z.K. Liu, Mater. Sci. Eng. A 397 (2005) 288-296.

[90] M. H. G. Jacobs and R. Schmid-Fetzer, CALPHAD 33 (2009) 170-178.

[91] J. Peng, P. Franke, D. Manara, T. Watkins and R. J. M. Konings, J. Alloys Compd. 674 (2016) 305-314.

[92] A. Taylor and R. W. Floyd, J. Inst. Met. 81 (1952) 451-464.

[93] N. C. Oforka and C. W. Haworth, Scand. J. Metall. 16 (1987) 184-188.

[94] Y. Kitajima, S. Hayashi and T. Narita, Mater. Sci. Forum 522-523 (2006) 103-110.

[95] F. J. J. van Loo, Prog. Solid State Chem. 20 (1990) 47-99.

[96] B. Grushko, W. Kowalski, D. Pavlyuchkov, S. Mi and M. Surowiec, J. Alloys Compd. 485 (2009) 132-138.

[97] B. Grushko, W. Kowalski, D. Pavlyuchkov, B. Przepiórzyński and M. Surowiec, J. Alloys Compd. 460 (2008) 299-304.

DOI: https://doi.org/10.1016/j.jallcom.2007.06.044

[98] F. Weitzer, W. Xiong, N. Krendelsberger, S. Liu, Y. Du and J. C. Schuster, Metall. Mater. Trans. A 39A (2008) 2363-2369.

[99] E. Rosell-Laclau, M. Durand-Charre, M. Audier, J. Alloys Compd. 233 (1996) 246-263.

[100] D.N. Compton, L.A. Cornish, M.J. Witcomb, J. Alloys Compd. 317–318 (2001) 372-378.

[101] A. Sato, A. Yamamoto, X.Z. Li, K. Hiraga, T. Haibach, W. Steurer, Acta Crystallogr. C 53 (1997) 1531-1533.

[102] W. Cao, J. Zhu, Y. Yang, F. Zhang, S. Chen, W. A. Oates and Y. A. Chang, Acta Mater. 53 (2005) 4189-4197.

[103] W. Huang and Y. A. Chang, Intermet. 7 (1999) 863-874.

[104] P. Brož, M. Svoboda, J. Buršík, A. Kroupa and J. Havránková, Mater. Sci. Eng. A325 (2002) 59-65.

[105] W. Xiong, Ph. D. thesis, KTH Royal Institute of Technology, Stockholm, Sweden (2012).

[106] T. Maciag and K. Rzyman, J. Achievements Mater. Manufact. Eng. 55 (2012) 275-279.

[107] T. Maciag and K. Rzyman, J. Therm. Anal. Calorim. 113 (2013) 189-197.

[108] N.C. Oforka and B.B. Argent, J. Less Common Met. 114 (1985) 97-109.

[109] S. Kek, C. Rzyman, F. Sommer, An. Fis. B 86 (1990) 31-38.

[110] M. Ellner, K.J. Best, H. Jacobi, K. Schubert, Struktur von Ni3Ga4, Journal of the Less Common Metals 19/3 (1969) 294-296.

DOI: https://doi.org/10.1016/0022-5088(69)90109-x

[111] Y. M. Hong, Y. Mishima and T. Suzuki, MRS Symp. Proc. 133 (1989) 429-440.

[112] I. L Svetlov, A. L. Udovski, E. V. Monastyrskaya, I. V. Oldakovskii and M. P. Nazarova, Russ. Metall., (6) (1987) 186-192.

[113] K. Wakashima, K. Higuchi, T. Suzuki and S. Umekawa, Acta Metall. 31 (1983) 1937-(1944).

[114] J. T. Guo, X. H. Du, L. Z. Zhou, B. D. Zhou, Y. H. Qi and G. S. Li, J. Mater. Res. 17(9) (2002) 2346-2356.

[115] P. Nash, S. Fielding and D. R. F. West, Met. Sci. 17(4) (1983) 192-194.

[116] K. Korniyenko and V. Kublii, Landolt-Bornstein IV/11A3, 266-286.

[117] D.B. Miracle, K.A. Lark, V. Srinivas, H.A. Lipsitt, Metall. Trans. A 15 (1984) 481-486.

[118] X. Lu, Y. Cui and Z. Jin, Metall. Mater. Trans. A 30A (1999) 1785-1795.

[119] A. Raman and K. Schubert, Z. Met. 56 (1965) 99-104.

[120] B. Grushko, S. Mi and J. G. Highfield, J. Alloys Compd. 334 (2002) 187-191.

[121] A. V. Virkar and A. Raman, Z. Met. 60 (1969) 594-600.

[122] S. H. Zhou, Y. Wang, L. -Q. Chen, Z. -K. Liu and R. E. Napolitano, CALPHAD 46 (2014) 124-133.

[123] J. Peng, P. Franke, D. Manara, T. Watkins and R. J. M. Konings, J. Alloys Compd. 674 (2016) 305-314.

[124] D.M. Cupid, O. Fabrichnaya, F. Ebrahimi and H.J. Seifert, Intermet. 18 (2010) 1185-1196.

[125] L. Zhang and Y. Du, CALPHAD 31 (2007) 529-540.

[126] Y. Himuro, Y. Tanaka, I. Ohnuma, R. Kainuma and K. Ishida, Intermet. 13 (2005) 620-630.

[127] Y. H. Sohn, A. Puccio and M. A. Dayananda, Metall. Mater. Trans. A 36A (2005) 2361-2370.

[128] I. Chumak, K.W. Richter, S. G. Fries and H. Ipser, J. Phase Equilib. Diff. 28 (2007) 417-421.

[129] I. Chumak, K.W. Richter and H. Ipser, Intermet. 15 (2007) 1416-1424.

[130] L. Zhang, Y. Du, X. Honghui, C. Tang, H. Chen and W. Chang, J. Alloys Compd. 454 (2008) 129-135.

[131] L. Eleno, K. Frisk and A. Schneider, Intermet. 14 (2006) 1276-1290.

[132] L. Zhang, J. Wang, Y. Du, R. Hu, P. Nash, X-G. Lu and C. Jiang, Acta Mater. 57 (2009) 5324-5341.

[133] C. T. Liu, S. C. Jeng and C. C. Wu, Metall Mater Trans A 23 (1992) 1395.

[134] F. Lechermann, M. Fa¨hnle and J. M. Sanchez, Intermetallics 13 (2005) 1096-1109.

[135] S. M. Hao, T. Takayama, K. Ishida and T. Nishzawa, Metall. Trans. A 15 (1984) 1819-1822.

[136] R. Kainuma, M. Ichinose, I. Ohnuma and K. Ishida, Mater. Sci. Eng. A 312 (2001) 168-175.

[137] R. Kozubski, J. Soltys, M. C. Cadeville, V. Pierron-Bohnes, T. H. Kim, P. Schwander, J. P. Hahn and J. Morgiel, Intermetallics 1 (1993) 139-150.

DOI: https://doi.org/10.1016/0966-9795(93)90009-k

[138] E. Partyka and R. Kozubski, Intermetallics 11 (2003) 939-944.

[139] M. Albers, D. Kath and K. Hilpert, Metall. Mater. Trans. A 27 (1996) 3569-3575.

[140] M. Khaidar, C.H. Allibert, J. Driole, Z. Metallkd. 73 (1982) 433–438.

[141] U. Lemmerz, B. Grushko, C. Freiburg, M. Jansen, Philos. Mag. Lett. 69 (1994) 141–146.

[142] B. Grushko, U. Lemmerz, K. Fischer, C. Freiburg, Phys. Status Solidi 155A (1996) 17–30.

[143] J. Breuer, A. Grün, F. Sommer and E. J. Mittemeijer, Metall. Mater. Trans. B 32B (2001) 913-918.

[144] K. Parlinski, P. T. Jochym, R. Kozubski and P. Oramus, Intermet. 11 (2003) 157-160.

[145] S. H. Liu. C. P. Liu, W. Q. Liu, X. N. Zhang, P. Yan and C. Y. Wang, Phil. Mag. 96 (2016) 2204-2218.

[146] P. Lazar and R. Podloucky, Phys. Rev. B 73 (2006) 104114-1-8.

[147] J. S. Van Sluytman, A. L. Fontaine, J. M. Cairney and T. M. Pollock, Acta Mater. 58 (2010) 1952-(1962).

[148] Y. Tu, Z. Mao and D. N. Seidman, Appl. Phys. Lett. 101 (2012) 121910-1-4.

[149] M. Fährmann, P. Fratzl, O. Paris, E. Fährmann and W. C. Johnson, Acta Metall. Mater. 43 (1995) 1007-1022.

[150] C. Jiang and B. Gleeson, Scr. Mater. 55 (2006) 433-436.

[151] C. Jiang, Acta Mater. 55 (2007) 4799-4806.

[152] W. H. Tian, C. S. Han, M. Nemoto, Intermetallics 7 (1999) 59-67.

[153] I. M. Anderson, A. J. Duncan and J. Bentley, Mater. Res. Soc. Symp. Proc. 364 (1995) 443-448.

[154] R. Hu, H-N. Su and P. Nash, Pure Appl. Chem. 79 (2007) 1653-1673.

[155] R. Hu, Thermodynamic measurement of Al-Ni-X ternary systems, PhD thesis (2008) Illinois Institute of Technology.

[156] C. Jiang and B. Gleeson, Scripta Mater. 55 (2006) 759-762.

[157] H. Wei, J. J. Liang, B. Z. Sun, Q. Cheng, X. F. Sun, P. Peng, M. S. Dargusch and X. Yao, Phil. Mag. Lett. 90 (2010) 225-232.

[158] Z. Zhang, B. Bai, H. Peng. S. Gong and H. Guo, Mater. Design 88 (2015) 667-674.

[159] G. Frommeyer, R. Fischer, J. deges, R. Rablbauer and A. Schneider, Ultramicroscopy 101 (2004) 139-148.

DOI: https://doi.org/10.1016/j.ultramic.2004.05.006

[160] L. M. Pike, I. M. Anderson, C. T. Liu and Y. A. Chang, Acta Mater. 50 (2002) 3859-3879.

[161] T. Wang, J. Zhu, R. A. Mackay, L-Q. Chen and Z-K. Liu, Metall. Mater. Trans. A 35A (2004) 2313-2321.

[162] A. Paul, T. Laurila, V. Vuorinen and S. V. Divinski, Thermodynamics, Diffusion and the Kirkendall Effect in Solids, first ed., Springer, Switzerland, (2014).

DOI: https://doi.org/10.1007/978-3-319-07461-0

[163] C. Jiang, M. F. Besser, D. J. Sordelet and B. Gleeson, Acta Mater. 53 (2005) 2101-2109.

[164] A. Sato, H. Harada, T. Yokokawa, T. Murakumo, Y. Koizumi, T. Kobayashi and H. Imai, Scr. Mater. 54 (2006) 1679-1684.