p.1
p.56
p.98
p.136
p.167
Phase Stability, Structure and Thermodynamics of Modified Ni- and Fe-Aluminides
Abstract:
The Ni-aluminides are integral constituents of thermal barrier coatings applied over Ni-based superalloys. These aluminides provide oxidation-resistance by forming a protective α–Al2O3 surface layer. The Pt-modified β–NiAl bond coat has been developed with an impetus to increase the service-life of Ni-based superalloys. The Pt-modified β–NiAl bond coat significantly improves the oxidation-resistance of superalloys. An interdiffusion zone containing topologically closed packed phases develops at the bond coat/superalloy interface. This eventually leads to Al-lean γ′–Ni3Al transformation, whose oxidation resistance is inferior to that of β–NiAl. The Pt-group metals Ir and Ru delay this transformation and impart creep-resistance to the bond coat. Recent investigations demonstrate that alloying with transition metals such as Cr, Mo and Fe enhance the mechanical strength. The functional stability of bond coat-superalloy assembly counts on the interfacial reaction and associated local structural variations which is a function of bond coat composition. This chapter elucidates the effect of various alloying elements on phase constitutions, crystallographic structural stability and thermodynamics of Ni-and Fe-aluminides to engineer a prospective bond coat.
Info:
Periodical:
Pages:
1-55
Citation:
Online since:
November 2017
Authors:
Keywords:
Price:
Сopyright:
© 2017 Trans Tech Publications Ltd. All Rights Reserved
Citation:
* - Corresponding Author
[1] K. A. Marino, B. Hinnemann and E. A. Carter, PNAS 108 (2011) 5480-5487.
[2] G. H. Meier and F. S. Petit, Mater. Sci. Eng. A 153 (1992) 548-560.
[3] H. J. Kim and M. E. Walter, Mater. Sci. Eng. A 360 (2003) 7-17.
[4] P. Kiruthika, S. K. Makineni, C. Srivastava, K. Chattopadhyay and A. Paul, Acta Materialia, 105 (2016) 438-448.
[5] D. R. Clarke and C. G. Levi, Annu. Rev. Mater. Res. 33 (2003) 383-417.
[6] V. K. Tolpygo and D. R. Clarke, Acta Mater. 48 (2000) 3283-3622.
[7] G. Fisher, M. Y. Chan, P. K. Datta and J. S. Burnell-Gray, Platinum Met. Rev. 43(2) (1999) 59-61.
[8] F. Wu, H. Murakami and H. Harada, Mater. Trans. 44 (2003) 1675-1678.
[9] Z. Zhang, B. Bai, H. Peng. S. Gong and H. Guo, Mater. Design 88 (2015) 667-674.
[10] R. D. Field, D. F. Lahrman and R. Darolia, Acta Metall. Mater. 39 (1991) 2961-2969.
[11] R. Darolia, D. F. Lahrman and R. D. Field, Scr. Mater. 26 (1992) 1007-1012.
[12] C. Leyens, B. A. Pint and I. G. Wright, Surf. Coat. Technol. 133-134 (2000) 15-22.
[13] J. D. Cotton and R. D. Noebe, Intermet. 1 (1993) 3-20.
[14] L. Kaufman and H. Nesor, CALPHAD 2 (1978) 325-348.
[15] H. Okamoto, J. Phase Equilibria 14 (1993) 257-259.
[16] I. Ansara, B. Sundman and P. Willemin, Acta Metall. 36 (1988) 977-982.
[17] Y. Du and N. Claveguera, J. Alloys Compd. 237 (1996) 20-32.
[18] I. Ansara, N. Dupin, H. L. Lukas and B. Sundman, J. Alloys Compd. 247 (1997) 20-30.
[19] W. Huang and Y. A. Chang, Intermet. 6 (1998) 487-498.
[20] N. Dupin, I. Ansara and B. Sundman, CALPHAD 25 (2001) 279-298.
[21] H. –L. Chen, E. Doernberg, p. Svoboda and R. Schmid-Fetzer, Thermochim. Acta 512 (2011) 189-195.
[22] R. Hu and P. Nash, J. Mater. Sci. 41 (2006) 631-641.
[23] W. Oelsen and W. Middel, Mitt. Kaiser-Wilhelm-Inst. Eisenforsch, Dusseldorf 19 (1937) 1-26.
[24] F. Z. Chrifi-Alaoui, M. Nassik, K. Mahdouk and J. C. Gachon, J. Alloys compd. 364 (2004) 121-126.
[25] Eth. Henig and H. L. Lukas, Z. Metall. 66 (1975) 98-108.
[26] K. Rzyman and Z. Moser, Prog. Mater. Sci. 49 (2004) 581-606.
[27] O. Kubaschewski, Trans. Faraday Soc. 54 (1958) 814-820.
[28] P. M. Robinson and M. B. Bever, Thermodynamic properties in: Intermetallic compounds, ed. J. H. Westbrook, John Wiley and Sons, Inc. New York, (1967).
[29] R. Hu, H-N. Su and P. Nash, Pure Appl. Chem. 79 (2007) 1653-1673.
[30] C. L. Fu, Y. –Y. Ye, M. H. Yu and K. M. Ho, Phys. Rev. B 48 (1993) 6712-6715.
[31] A. J. Bradley and A. Taylor, Proc. R. Soc. London, Ser. A 159 (1937) 56-72.
[32] C. Jiang, D. J. Sordelet and B. Gleeson, Acta Mater. 54 (2006) 1147-1154.
[33] C. L. Fu and G. S. Painter, Acta Mater. 45 (1997) 481-488.
[34] A. V. Ruban, V. V. Popov, V. K. Portnoi and V. I. Bogdanov, Phil. Mag. 94 (2014) 20-34.
[35] K. Badura and H.E. Schaefer. Phys. Rev. B 56 (6) (1997) 3032-3037.
[36] K. Rzyman, Z. Moser, R.E. Watson, M. Weinert. J. Phase Equilib. 17 (3) (1996) 173-178.
[37] F. Gao, D. J. Bacon and G. J. Ackland, Phil. Mag. A 67 (1993) 275-288.
[38] K. A. Marino and E. A. Carter, Acta Mater. 56 (2008) 3502-3510.
[39] V. Baheti, S. Islam, P. Kumar, R. Ravi, R. Narayanan, D. Hongqun, V. Vuorinen, T. Laurila, A. Paul, Philos. Mag. 96 (2016) 15–30.
[40] V. D. Divya, U. Ramamurty and A. Paul, Phil. Mag. 92 (2012) 2187-2214.
[41] S. Santra, S. K. Makineni, S. Suwas, K. Chattopadhyay and A. Paul, Mater. Des. 110 (2016) 404-413.
[42] L. Bencze, D. D. Raj, D. Kath, W. A. Oates, L. Singheiser and K. Hilpert, Metal. Mater. Trans. B 35B (2004) 867-876.
[43] T. Ikeda, A. Almazouz, H. Numakura, M. Koiwa, W. Sprengel and H. Nakajima, Acta Mater. 46 (1998) 5369-5376.
[44] A. Paul, A. A. Kodentsov and F. J. J. van Loo, J. Alloys and Compds. 403 (2005) 147-153.
[45] X. L. Liu, G. Lindwall, R. Otis, H. Kim and Z-K. Liu, CALPHAD 55 (2016) 88-102.
[46] C. Zhang, J. Zhu, A. Bengtson, D. Morgan, F. Zhang, W. -S. Cao and Y. A. Chang, Acta Mater. 56 (2008) 2576-2584.
[47] J. Zhu, C. Zhang, W. Cao, Y. Yang, F. Zhang, S. Chen, D. Morgan and Y. A. Chang, Acta Mater. 57 (2009) 202-212.
[48] B. Grushko, D. Kapush, V. Konoval and V. Shemet, Powder Metall. Metal Ceramics 50 (2011) 462-470.
[49] M. R. Jackson and J. R. Rairden, Metall. Trans. A 8 (1977) 1697-1707.
[50] S. Hayashi, S. I. Ford, D. J. Young, D. J. Sordelet, M. F. Besser and B. Gleeson, Acta Mater. 53 (2005) 3319-3328.
[51] B. Gleeson, W. Wang, S. Hayashi and D.J. Sordelet, Mater. Sci. Forum 461–464 (2004) 213-222.
[52] J. L. Kamm and W. W. Milligan, Scr. Metall. Mater. 31 (1994) 1461-1464.
[53] E. Copland, J. Phase Equilibria Diffus. 28 (2007) 38-48.
[54] H. Meininger and M. Ellner, J. Alloys Compd. 353 (2003) 207-212.
[55] X-G. Lu, B. Sundman and J. Ågren, CALPHAD 33 (2009) 450-456.
[56] W. Gong, L. Zhang, H. Wei and C. Zhou, Prog. Nat. Sci.: Mater. Inter. 21 (2011) 221-226.
[57] A. J. McAlister and D. J. Kahan, Bull. Alloy Phase Diagr. 7 (1986) 47-51.
[58] J. Zhu, C. Zhang, D. Ballard, P. Martin, J. Fournelle, W. Cao and Y. A. Chang, Acta Mater. 58 (2010) 180-188.
[59] B. Grushko and D. Kapush, J. Alloys Compd. 594 (2014) 127-132.
[60] B. Grushko, D. Kapush and L. Meshi, J. Alloys Compd. 514 (2012) 60-63.
[61] F. R. Lamastra, I. Cacciotti, A. Bellucci and F. Nanni, Intermet. 22 (2012) 241-250.
[62] Y. Yamabe-Mitarai, H. Aoki, P. J. Hill and H. Harada, Scripta Mater. 48 (2003) 565-570.
[63] F. Wu, H. Murakami and A. Suzuki, Surf. Coat. Technol. 168 (2003) 62-69.
[64] Y. Yamabe-Mitarai, T. Aoyagi, K. Nishida, H. Aoki, T. Abe and H. Murakami, Intermet. 15 (2007) 479-488.
[65] M. Ode, T. Abe and H. Murakami, private communication.
[66] C. Zhang, J. Zhu, A. Bengtson, D. Morgan, F. Zhang, W. -S. Cao and Y. A. Chang, Acta Mater. 56 (2008) 2576-2584.
[67] C. Jiang and B. Gleeson, Acta Mater. 54 (2006) 4101-4110.
[68] D. Kapush, T. Y. Velikanova and B. Grushko, J. Alloys Compd. 497 (2010) 105-109.
[69] B. Tryon, F. Cao, K. S. Murphy, C. G. Levi and T. M. Pollock, JOM (2006) 53-59.
[70] S. Chakravorty and D. R.F. West, J. Mater. Sci. 21 (1986) 2721-2730.
[71] B. Tryon and T. M. Pollock, Mater. Sci. Eng. A 430 (2006) 266-276.
[72] S. Chakravorty and D. R.F. West, Scr. Metall. 19 (1985) 1355-1360.
[73] I. Vjunitsky, E. Schönfeld, T. Kaiser, W. Steurer and V. Shklover, Intermet. 13 (2005) 35-45.
[74] J. Zhu, C. Zhang, W. Cao, Y. Yang, F. Zhang, S. Chen, D. Morgan and Y. A. Chang, Acta Mater. 57 (2009) 202-212.
[75] V. F. Tsurikov, E. M. Sokolovskaya, E. F. Kazakova, Vestnik Moskovskogo Universiteta 35 (1980) 512-514.
[76] A. S. Harte, P. M. Hung, I. J. Horner, N. Hall, L. A. Cornish and M. J. Witcomb, Adv. X-Ray Anal. 39 (1997) 747-754.
[77] K. N. Kulkarni, B. Tryon, T. M. Pollock and M. A. Dayananda, J. Phase Equilib. Diff. 28 (2007) 503-509.
[78] I. J. Horner, N. Hall, L. A. Cornish, M. J. Witcomb, M. B. Cortie and T. D. Boniface, J. Alloys Compd. 264 (1998) 173-179.
[79] H. N. Su and P. Nash, J. Alloy Compd. 403 (2005) 217-222.
[80] S. Prins, R. Arroyave and Z-K. Liu, Acta Mater. 55 (2007) 4781-4787.
[81] S. Hallström, D. Andersson, A. Ruban and J. Ågren, Acta Mater. 56 (2008) 4062-4069.
[82] R. D. Noebe, R. R. Bowman and M. V. Nathal, Review of the Physical and Mechanical properties and potential applications of the B2 compound NiAl, NASA Technical Memorandum 105598, (1992).
[83] S. Mi, B. Grushko, C. Dong and K. Urban, J. Alloys Compd. 359 (2003) 193-197.
[84] S. Mi, B. Grushko, C. Dong and K. Urban, J. Non-Cryst. Solid. 334&335 (2004) 214-217.
[85] S. J. Hong, G. H. Hwang, W. K. Han and S. G. Kang, Intermet. 17 (2009) 381-386.
[86] G. Cacciamani, A. Dinsdale, M. Palumbo and A. Pasturel, Intermet. 18 (2010) 1148-1162.
[87] P. E. A. Turchi, L. Kaufman and Z. K. Liu, CALPHAD 30 (2006) 70-87.
[88] Y. Wang and G. Cacciamani, J. Alloys Compd. 688 (2016) 422-435.
[89] S.H. Zhou, Y. Wang, C. Jiang, J.Z. Zhu, L.Q. Chen, Z.K. Liu, Mater. Sci. Eng. A 397 (2005) 288-296.
[90] M. H. G. Jacobs and R. Schmid-Fetzer, CALPHAD 33 (2009) 170-178.
[91] J. Peng, P. Franke, D. Manara, T. Watkins and R. J. M. Konings, J. Alloys Compd. 674 (2016) 305-314.
[92] A. Taylor and R. W. Floyd, J. Inst. Met. 81 (1952) 451-464.
[93] N. C. Oforka and C. W. Haworth, Scand. J. Metall. 16 (1987) 184-188.
[94] Y. Kitajima, S. Hayashi and T. Narita, Mater. Sci. Forum 522-523 (2006) 103-110.
[95] F. J. J. van Loo, Prog. Solid State Chem. 20 (1990) 47-99.
[96] B. Grushko, W. Kowalski, D. Pavlyuchkov, S. Mi and M. Surowiec, J. Alloys Compd. 485 (2009) 132-138.
[97] B. Grushko, W. Kowalski, D. Pavlyuchkov, B. Przepiórzyński and M. Surowiec, J. Alloys Compd. 460 (2008) 299-304.
[98] F. Weitzer, W. Xiong, N. Krendelsberger, S. Liu, Y. Du and J. C. Schuster, Metall. Mater. Trans. A 39A (2008) 2363-2369.
[99] E. Rosell-Laclau, M. Durand-Charre, M. Audier, J. Alloys Compd. 233 (1996) 246-263.
[100] D.N. Compton, L.A. Cornish, M.J. Witcomb, J. Alloys Compd. 317–318 (2001) 372-378.
[101] A. Sato, A. Yamamoto, X.Z. Li, K. Hiraga, T. Haibach, W. Steurer, Acta Crystallogr. C 53 (1997) 1531-1533.
[102] W. Cao, J. Zhu, Y. Yang, F. Zhang, S. Chen, W. A. Oates and Y. A. Chang, Acta Mater. 53 (2005) 4189-4197.
[103] W. Huang and Y. A. Chang, Intermet. 7 (1999) 863-874.
[104] P. Brož, M. Svoboda, J. Buršík, A. Kroupa and J. Havránková, Mater. Sci. Eng. A325 (2002) 59-65.
[105] W. Xiong, Ph. D. thesis, KTH Royal Institute of Technology, Stockholm, Sweden (2012).
[106] T. Maciag and K. Rzyman, J. Achievements Mater. Manufact. Eng. 55 (2012) 275-279.
[107] T. Maciag and K. Rzyman, J. Therm. Anal. Calorim. 113 (2013) 189-197.
[108] N.C. Oforka and B.B. Argent, J. Less Common Met. 114 (1985) 97-109.
[109] S. Kek, C. Rzyman, F. Sommer, An. Fis. B 86 (1990) 31-38.
[110] M. Ellner, K.J. Best, H. Jacobi, K. Schubert, Struktur von Ni3Ga4, Journal of the Less Common Metals 19/3 (1969) 294-296.
[111] Y. M. Hong, Y. Mishima and T. Suzuki, MRS Symp. Proc. 133 (1989) 429-440.
[112] I. L Svetlov, A. L. Udovski, E. V. Monastyrskaya, I. V. Oldakovskii and M. P. Nazarova, Russ. Metall., (6) (1987) 186-192.
[113] K. Wakashima, K. Higuchi, T. Suzuki and S. Umekawa, Acta Metall. 31 (1983) 1937-(1944).
[114] J. T. Guo, X. H. Du, L. Z. Zhou, B. D. Zhou, Y. H. Qi and G. S. Li, J. Mater. Res. 17(9) (2002) 2346-2356.
[115] P. Nash, S. Fielding and D. R. F. West, Met. Sci. 17(4) (1983) 192-194.
[116] K. Korniyenko and V. Kublii, Landolt-Bornstein IV/11A3, 266-286.
[117] D.B. Miracle, K.A. Lark, V. Srinivas, H.A. Lipsitt, Metall. Trans. A 15 (1984) 481-486.
[118] X. Lu, Y. Cui and Z. Jin, Metall. Mater. Trans. A 30A (1999) 1785-1795.
[119] A. Raman and K. Schubert, Z. Met. 56 (1965) 99-104.
[120] B. Grushko, S. Mi and J. G. Highfield, J. Alloys Compd. 334 (2002) 187-191.
[121] A. V. Virkar and A. Raman, Z. Met. 60 (1969) 594-600.
[122] S. H. Zhou, Y. Wang, L. -Q. Chen, Z. -K. Liu and R. E. Napolitano, CALPHAD 46 (2014) 124-133.
[123] J. Peng, P. Franke, D. Manara, T. Watkins and R. J. M. Konings, J. Alloys Compd. 674 (2016) 305-314.
[124] D.M. Cupid, O. Fabrichnaya, F. Ebrahimi and H.J. Seifert, Intermet. 18 (2010) 1185-1196.
[125] L. Zhang and Y. Du, CALPHAD 31 (2007) 529-540.
[126] Y. Himuro, Y. Tanaka, I. Ohnuma, R. Kainuma and K. Ishida, Intermet. 13 (2005) 620-630.
[127] Y. H. Sohn, A. Puccio and M. A. Dayananda, Metall. Mater. Trans. A 36A (2005) 2361-2370.
[128] I. Chumak, K.W. Richter, S. G. Fries and H. Ipser, J. Phase Equilib. Diff. 28 (2007) 417-421.
[129] I. Chumak, K.W. Richter and H. Ipser, Intermet. 15 (2007) 1416-1424.
[130] L. Zhang, Y. Du, X. Honghui, C. Tang, H. Chen and W. Chang, J. Alloys Compd. 454 (2008) 129-135.
[131] L. Eleno, K. Frisk and A. Schneider, Intermet. 14 (2006) 1276-1290.
[132] L. Zhang, J. Wang, Y. Du, R. Hu, P. Nash, X-G. Lu and C. Jiang, Acta Mater. 57 (2009) 5324-5341.
[133] C. T. Liu, S. C. Jeng and C. C. Wu, Metall Mater Trans A 23 (1992) 1395.
[134] F. Lechermann, M. Fa¨hnle and J. M. Sanchez, Intermetallics 13 (2005) 1096-1109.
[135] S. M. Hao, T. Takayama, K. Ishida and T. Nishzawa, Metall. Trans. A 15 (1984) 1819-1822.
[136] R. Kainuma, M. Ichinose, I. Ohnuma and K. Ishida, Mater. Sci. Eng. A 312 (2001) 168-175.
[137] R. Kozubski, J. Soltys, M. C. Cadeville, V. Pierron-Bohnes, T. H. Kim, P. Schwander, J. P. Hahn and J. Morgiel, Intermetallics 1 (1993) 139-150.
[138] E. Partyka and R. Kozubski, Intermetallics 11 (2003) 939-944.
[139] M. Albers, D. Kath and K. Hilpert, Metall. Mater. Trans. A 27 (1996) 3569-3575.
[140] M. Khaidar, C.H. Allibert, J. Driole, Z. Metallkd. 73 (1982) 433–438.
[141] U. Lemmerz, B. Grushko, C. Freiburg, M. Jansen, Philos. Mag. Lett. 69 (1994) 141–146.
[142] B. Grushko, U. Lemmerz, K. Fischer, C. Freiburg, Phys. Status Solidi 155A (1996) 17–30.
[143] J. Breuer, A. Grün, F. Sommer and E. J. Mittemeijer, Metall. Mater. Trans. B 32B (2001) 913-918.
[144] K. Parlinski, P. T. Jochym, R. Kozubski and P. Oramus, Intermet. 11 (2003) 157-160.
[145] S. H. Liu. C. P. Liu, W. Q. Liu, X. N. Zhang, P. Yan and C. Y. Wang, Phil. Mag. 96 (2016) 2204-2218.
[146] P. Lazar and R. Podloucky, Phys. Rev. B 73 (2006) 104114-1-8.
[147] J. S. Van Sluytman, A. L. Fontaine, J. M. Cairney and T. M. Pollock, Acta Mater. 58 (2010) 1952-(1962).
[148] Y. Tu, Z. Mao and D. N. Seidman, Appl. Phys. Lett. 101 (2012) 121910-1-4.
[149] M. Fährmann, P. Fratzl, O. Paris, E. Fährmann and W. C. Johnson, Acta Metall. Mater. 43 (1995) 1007-1022.
[150] C. Jiang and B. Gleeson, Scr. Mater. 55 (2006) 433-436.
[151] C. Jiang, Acta Mater. 55 (2007) 4799-4806.
[152] W. H. Tian, C. S. Han, M. Nemoto, Intermetallics 7 (1999) 59-67.
[153] I. M. Anderson, A. J. Duncan and J. Bentley, Mater. Res. Soc. Symp. Proc. 364 (1995) 443-448.
[154] R. Hu, H-N. Su and P. Nash, Pure Appl. Chem. 79 (2007) 1653-1673.
[155] R. Hu, Thermodynamic measurement of Al-Ni-X ternary systems, PhD thesis (2008) Illinois Institute of Technology.
[156] C. Jiang and B. Gleeson, Scripta Mater. 55 (2006) 759-762.
[157] H. Wei, J. J. Liang, B. Z. Sun, Q. Cheng, X. F. Sun, P. Peng, M. S. Dargusch and X. Yao, Phil. Mag. Lett. 90 (2010) 225-232.
[158] Z. Zhang, B. Bai, H. Peng. S. Gong and H. Guo, Mater. Design 88 (2015) 667-674.
[159] G. Frommeyer, R. Fischer, J. deges, R. Rablbauer and A. Schneider, Ultramicroscopy 101 (2004) 139-148.
[160] L. M. Pike, I. M. Anderson, C. T. Liu and Y. A. Chang, Acta Mater. 50 (2002) 3859-3879.
[161] T. Wang, J. Zhu, R. A. Mackay, L-Q. Chen and Z-K. Liu, Metall. Mater. Trans. A 35A (2004) 2313-2321.
[162] A. Paul, T. Laurila, V. Vuorinen and S. V. Divinski, Thermodynamics, Diffusion and the Kirkendall Effect in Solids, first ed., Springer, Switzerland, (2014).
[163] C. Jiang, M. F. Besser, D. J. Sordelet and B. Gleeson, Acta Mater. 53 (2005) 2101-2109.
[164] A. Sato, H. Harada, T. Yokokawa, T. Murakumo, Y. Koizumi, T. Kobayashi and H. Imai, Scr. Mater. 54 (2006) 1679-1684.