[1]
G. Sauthoff, Intermetallics, VCH, Verlagsgesellschaft, Weinheim, Germany, (1995).
Google Scholar
[2]
G. K. Dey, Physical metallurgy of nickel aluminides, Sadhana 28 (1-2) (2003) 247-262.
DOI: 10.1007/bf02717135
Google Scholar
[3]
N. Cinca, C. R. C. Lima, J. M. Guilemany, An overview of intermetallics research and application: Status of thermal spray coatings, J. Mater. Res. Technol. 2 (1) (2013) 75-86.
DOI: 10.1016/j.jmrt.2013.03.013
Google Scholar
[4]
U. R. Kattner and B. P. Burton: ASM handbook Volume 3: Alloy Phase Diagrams, ASM Inernational, Metal Park, OH, (1991).
Google Scholar
[5]
P. Nash, M. F. Singleton, and J. L. Murray: ASM handbook Volume 3: Alloy Phase Diagrams, ASM Inernational, Metal Park, OH, (1991).
Google Scholar
[6]
C. T. Liu, J. A. Horton Jr., Effect of refractory alloying additions on mechanical properties of near-stoichiometric NiAl, Mater. Sci. Eng. A 192/193 (1995) 170-178.
DOI: 10.1016/0921-5093(94)03232-7
Google Scholar
[7]
B. Tryon, F. Cao, K. S. Murphy, C. G. Levi and T. M. Pollock, Ruthenium-containing bond coats for thermal barrier coating systems, JOM (2006) 58 (1) 53-59.
DOI: 10.1007/s11837-006-0069-x
Google Scholar
[8]
H. Mehrer, Diffusion in intermetallics, Mater. Trans. JIM 37 (6) (1996) 1259-1280.
DOI: 10.2320/matertrans1989.37.1259
Google Scholar
[9]
M. Koiwa, Diffusion in Materials – History and recent developments, Mater. Trans. JIM 39 (12) (1998) 1169-1179.
DOI: 10.2320/matertrans1989.39.1169
Google Scholar
[10]
Y. H. Sohn and M. A. Dayananda, Diffusion studies in the β (B2), β' (Bcc) and γ (Fcc) Fe-Ni-Al alloys at 1000 °C, Metall. Mater. Trans. A 33A 911) (2002) 3375-3392.
DOI: 10.1007/s11661-002-0326-8
Google Scholar
[11]
Y. A. Chang, J. P. Neumann, Thermodynamics and defect structure of intermetallic phases with the B2 (CsCl) structure, Prog. Solid-State Chem. 14 (1982) 221-301.
DOI: 10.1016/0079-6786(82)90004-8
Google Scholar
[12]
A. J. Bradley and A. Taylor, An X-ray analysis of the nickel-aluminide system, Proc. R. Soc. A 159 (1937) 56-72.
Google Scholar
[13]
C.L. Flu, Y. Y. Ye, and M. H. Yoo, Equilibrium point defects in intermetallics with the B2 structure: NiAl and FeAl, Phys. Rev. B 48 (9) (1993) 6712-6715.
DOI: 10.1103/physrevb.48.6712
Google Scholar
[14]
M. Fahnle, B. Meyer, G. Bester, J. Majer and N. Bornsen, Atomic defects and electronic structure of B2 FeAl, CoAl and NiAl, Def. Diff. For. 194-199 (2001) 279-286.
DOI: 10.4028/www.scientific.net/ddf.194-199.279
Google Scholar
[15]
Y. Mishin, A. Y. Lozovoi, A. Alavi, Evaluation of diffusion mechanisms in NiAl by embedded-atom and first-principles calculations, Phys. Rev. B 67 (2003) 014201-1-9.
DOI: 10.1103/physrevb.67.014201
Google Scholar
[16]
H. Bakker, N. A. Stolwijk and M. A. Hoetjes-ejkel, Diffusion kinetics and isotope effects for atomic migration via divacancies and triple defects in the CsCl (B2) structure, Phil. Mag. A 43 (2) (1981) 251-264.
DOI: 10.1080/01418618108239405
Google Scholar
[17]
E. W. Elcock and C. W. McCombie, Vacancy diffusion in binary ordered alloys, Phys. Rev. 109 (2) (1958) 605-606.
DOI: 10.1103/physrev.109.605
Google Scholar
[18]
P. Wynblatt, Diffusion mechanism in ordered body-centered cubic alloys, Acta Met. 15 (1967) 1453-1460.
DOI: 10.1016/0001-6160(67)90176-9
Google Scholar
[19]
M. Arita, M. Koiwa and S. Ishioka, Diffusion mechanisms in ordered alloys a detailed analysis of six-jump vacancy cycle in the B2 type lattice, Acta Met. 37 (5) (1989) 1363-1374.
DOI: 10.1016/0001-6160(89)90167-3
Google Scholar
[20]
S. Divinski and Chr. Herzig, On the six-jump cycle mechanism of self-diffusion in NiAl, Intermetallics 8 (2000) 1357-1368.
DOI: 10.1016/s0966-9795(00)00062-5
Google Scholar
[21]
N. A. Stolwijk, M. van Gend and H. Bakker, Self-diffusion in the intermetallic compound CoGa, Phil. Mag. A 42 (6) (1980) 783-808.
DOI: 10.1080/01418618008239385
Google Scholar
[22]
St. Frank, S. V. Divinski, U. Sodervall and Chr. herzig, Ni tracer diffusion in the B2-compound NiAl: influence of temperature and composition, Acta Mat. 49 (2001) 1399-1411.
DOI: 10.1016/s1359-6454(01)00037-4
Google Scholar
[23]
C. R. Kao, Y. A. Chang, On the composition dependencies of self-diffusion coefficients in B2 intermetallic compounds, Intermetallics 1 (4) (1993) 237-250.
DOI: 10.1016/0966-9795(93)90035-t
Google Scholar
[24]
I. V. Belova and G. E. Murch, The anti-structureal bridge mechanism for diffusion in ordered alloys of the B2 type, Intermetallics 6 (1998) 115-119.
DOI: 10.1016/s0966-9795(97)00053-8
Google Scholar
[25]
Y. Mishin and D. Farkas, Atomistic simulation of point defects and diffusion in B2 NiAl Part II. diffusion mechanisms, Phil. Mag. A 75 (1) (1997) 187-199.
DOI: 10.1080/01418619708210290
Google Scholar
[26]
I. V. Belova, M. E. Ivory and G. E. Murch, Diffusion in a model of an ordered alloy, Phil. Mag. A 72 (4) (1995) 871-880.
DOI: 10.1080/01418619508239940
Google Scholar
[27]
S. V. Divinski and L. N. Larikov, Diffusion by anti-structure defects in non-stoichiometric intermetallic compunds with B2 and L12 structures, J. Phys: Condes. Matter 9 (1997) 7873-7883.
DOI: 10.1088/0953-8984/9/37/018
Google Scholar
[28]
M. Athens, P. Bellon and G. Martin, Indentification of novel diffusion cycles in B2 ordered phases by Monte Carlo simulation, Phil. Mag. A 76 (3) (1997) 565-585.
DOI: 10.1080/01418619708214023
Google Scholar
[29]
D. Kuc, G. Niewielski, I. Bednarczyk, Structure and plasticity in hot deformed FeAl intermetallic phase base alloy, Mater. Char. 60 (2009) 1185-1189.
DOI: 10.1016/j.matchar.2009.03.020
Google Scholar
[30]
J. Cebulski, Applicaton of FeAl intermetallic phase matrix based alloys in the turbine components of a turbocharger, Metalurgija 54 (1) (2015) 154-156.
Google Scholar
[31]
L. H. Shah and M. Ishak, Review of Research Progress on Aluminum-Steel Dissimilar Welding, Mater. Manuf. Process. 29 (2014) 928- 933.
DOI: 10.1080/10426914.2014.880461
Google Scholar
[32]
M. M. Atabaki, M. Nikodinovski, P. Chenier, J. Ma, M. Harooni and R. Kovacevic, Welding of Aluminum Alloys to Steels: An Overview, Journal of Manufacturing Science and Production 14 (2) (2014) 59-78.
DOI: 10.1515/jmsp-2014-0007
Google Scholar
[33]
A. Bahadur and O.N. Mohanty, Structural studies of hot dip aluminized coatings on mild steel, Mater. Trans. JIM 32 (11) (1991) 1053-1061.
DOI: 10.2320/matertrans1989.32.1053
Google Scholar
[34]
R.W. Richards, R.D. Jones, P.D. Clements, H. Clarke, Metallurgy of continuous hot dip aluminising, Int. Mater. Rev. 39 (5) (1994) 191–212.
DOI: 10.1179/imr.1994.39.5.191
Google Scholar
[35]
G. Vogl and B. Sepiol, Elementary diffusion jump of iron atoms in intermetallic phases studied by Mossbauer spectroscopy – I. Fe-Al close to equiatomic stoichiometry, Acta Met. 42 (9) (1994) 3175-3181.
DOI: 10.1016/0956-7151(94)90416-2
Google Scholar
[36]
B. Sepiol and G. Vogl, Experimental arguments against six-jump cycle model of diffusion in FeAl, an intermetallic compound with B2 structure, Def. Diff. Forum 95-98 (1993) 831-838.
DOI: 10.4028/www.scientific.net/ddf.95-98.831
Google Scholar
[37]
R. Drautz and M. Fahnle, The six-jump diffusion cycles in B2 compounds revisited, Acta Mater. 47 (8) (1999) 2437-2447.
DOI: 10.1016/s1359-6454(99)00106-8
Google Scholar
[38]
R. Krachler, H. Ipser, B. Sepiol and G. Vogl, Diffusion mechanism and defect concentrations in β'-FeAl, an intermetallic compound with B2 structure, Intermetallics 3 (1995) 83-88.
DOI: 10.1016/0966-9795(94)p3690-p
Google Scholar
[39]
R. Feldwisch, B. Sepiol and G. Vogl, Elementary diffusion jump of iron atoms in intermetallic phases studied by Mossbauer spectroscopy – II. from order to disorder, Acta Met. 43 (5) (1994) 2033-(2039).
DOI: 10.1016/0956-7151(94)00382-r
Google Scholar
[40]
H. Mehrer, M. Eggersmann, A. Gude, M. Salamon, B. Sepiol, Diffusion in intermetallic phases of the Fe-Al and Fe-Si systems, Mater. Sci. Eng. A 239-240 (1997) 889-898.
DOI: 10.1016/s0921-5093(97)00680-1
Google Scholar
[41]
M. Eggersmann, B. Sepiol, G. Vogl and H. Mehrer, Self-diffusion in iron-aluminides studied by tracer and Mosbauer techniques, Def. Diff. Forum 143-147 (1997) 339-344.
DOI: 10.4028/www.scientific.net/ddf.143-147.339
Google Scholar
[42]
M. Eggersmann and H. Mehrer, Diffusion in intermetallic phases of the Fe-Al system, Phil. Mag. A 80 (5) (2000) 1219-1244.
DOI: 10.1080/01418610008212112
Google Scholar
[43]
Z. S. Tokei, J. Bernardini, P. Gas and D. L. Beke, Volume diffusion of iron in Fe3Al: influence of ordering, Acta Mater. 45 (2) (1997) 541-546.
DOI: 10.1016/s1359-6454(96)00196-6
Google Scholar
[44]
L. A. Girifalco, Vacancy concentration and diffusion in order-disorder alloys, J. Phys. Chem. Solids 24 (1964) 323-333.
DOI: 10.1016/0022-3697(64)90111-8
Google Scholar
[45]
L. N. Larikov, V. V. Geichenko, V. M. Fal'chenko: Diffusion processes in ordered alloys, Oxonian, New Delhi (1981) 112-116.
Google Scholar
[46]
R. Nakamura and Y. Iijima, Sel-diffusion of aluminium in the intermetallic compound Fe-48at%Al, Phil. Mag. 83 (4) (2003) 477-483.
DOI: 10.1080/0141861021000055655
Google Scholar
[47]
K. Hirano and A. Hishinuma, Interdiffusion in α solid solution of the FeAl system, J. JIM Vol. 32 (6) (1968) 516-521.
Google Scholar
[48]
K. Nishida, T. Yamamoto and T. Nagata, On the interdiffusion in α-solid solution of the Fe-Al system in Al vapor, Trans. JIM 12 (1971) 310-316.
DOI: 10.2320/matertrans1960.12.310
Google Scholar
[49]
R. Nakamura, K. Takasawa, Y. Yamazaki, Y. Iijima, Single-phase interdiffusion in the B2 type intermetallic compounds NiAl, CoAl and FeAl, Intermetallics 10 (2002) 195-204.
DOI: 10.1016/s0966-9795(01)00125-x
Google Scholar
[50]
H. C. Akuezue and D. P. Whittle, Interdiffusion in Fe-Al system: aluminizing, Met. Sci. 17 (1983) 27-31.
DOI: 10.1179/msc.1983.17.1.27
Google Scholar
[51]
M. Weinhagen, B. Kohler, J. Wolff and Th. Hehenkamp, Interdiffusion in Fe-Al alloys, Def. Diff. Forum 143-147 (1997) 449-454.
DOI: 10.4028/www.scientific.net/ddf.143-147.449
Google Scholar
[52]
R. W. Balluffi and L. L. Seigle, Diffusion in bimetal vapor-solid couples, J. App. Phys. 25 (5) (1954) 607-614.
DOI: 10.1063/1.1721698
Google Scholar
[53]
D. B. Miracle, The physical and mechanical properties of NiAl, Acta mater. 41 (3) 649-684.
Google Scholar
[54]
Z. Bai, D. Li, H. Peng, J. Wang, H. Guo, S. Gong, Suppressing the formation of SRZ in a Ni-based single crystal superalloy by RuNiAl diffusion barrier, Prog. Natur. Sci.: mater. Int. 22 92) (2012) 146-152.
DOI: 10.1016/j.pnsc.2012.03.007
Google Scholar
[55]
G. F. Hancock and B. R. McDonnel, Diffusion in the intermetallic compound NiAl, Phys. Stat. Sol. A 4 (1971) 143-150.
DOI: 10.1002/pssa.2210040115
Google Scholar
[56]
S. R. Butler, J. E. Hanlon and R. J. Wasilewski, Electric and magnetic properties of B2 structure compounds: NiAl and CoAl, J. Phys. Chem. Solids 30 (1969) 1929-(1934).
DOI: 10.1016/0022-3697(69)90168-1
Google Scholar
[57]
M. J. Cooper, An investigation of the ordering of the phases CoAl and NiAl, Phil. Mag. 8 (89) (1963) 805-810.
DOI: 10.1080/14786436308213837
Google Scholar
[58]
A. Lutz-Birk and H. Jacobi, Diffusion of 114mIn in NiAl, Scripta Met. 9 (1975) 761-765.
DOI: 10.1016/0036-9748(75)90236-7
Google Scholar
[59]
Y. Minamino, Y. Koizumi and U. Inui, In diffusion in B2-type ordered NiAl intermetallic compound, Def. Diff. Forum 194-199 (2001) 517-522.
DOI: 10.4028/www.scientific.net/ddf.194-199.517
Google Scholar
[60]
L. D. Hall, An analytical method of calculating variable diffusion coefficients, J. Che. Phys. 21 (1) (1953) 87-89.
Google Scholar
[61]
A. E. Berkowitz, F. E. Jaumot Jr. and F. C. Nix, Diffusion of Co60 in some Ni-Al alloys containing excess vacancies, Phys. Rev. 95 (5) (1954) 1185-1189.
DOI: 10.1103/physrev.95.1185
Google Scholar
[62]
Y. Minamino, Y. Yuichiro, N. Tsuji and T. Yamada, Co diffusion in a B2-type ordered NiAl compound, J. JIM 66 (2) (2002) 67-74.
Google Scholar
[63]
Y. Minamino, Y. Koizumi, N. Tsuzi, M. Morioka, K. Hirao, Y. Shirai, Pt diffusion in B2-type ordered NiAl intermetallic compound and its diffusion mechanisms, Sci. Tech. Adv. Mater. 1 (2000) 237-249.
DOI: 10.1016/s1468-6996(01)00003-1
Google Scholar
[64]
L. Onsager, Theories and problems of liquid diffusion, Ann. N. Y. Acad. Sci. 46 (5) (1845) 214-265.
Google Scholar
[65]
M. A. Dayananda and C. W. Kim, Zero-flux planes and flux reversals in Cu-Ni-Zn diffusion couples, Metall. Trans. A 10A (1979) 1333-1339.
DOI: 10.1007/bf02811989
Google Scholar
[66]
M. A. Dayananda, An analysis of concentration profiles for fluxes, diffusion depths and zero-flux planes in multicomponent diffusion, Metall. Trans. A 14 (9) (1983) 1851-1858.
DOI: 10.1007/bf02645555
Google Scholar
[67]
V. Verma, A. Tripathi and K. N. Kulkarni, On interdiffusion in FeNiCoCrMn high entropy alloy, J. Phase Equilib. Diff. 38 (4) (2017) 445-456.
DOI: 10.1007/s11669-017-0579-y
Google Scholar
[68]
J. S. Kirkaldy, J. E. Lane, and G. R. Mason, Diffusion in multicomponent metallic systems VII. Solutions of the multicomponent diffusion equations with variable coefficients, Can. J. Phys. 41 (1963) 2174-2186.
DOI: 10.1139/p63-212
Google Scholar
[69]
L. Boltzmann, Integration of diffusion equations by variable coefficients, Ann. der Physik 53 (1894) 959-964.
Google Scholar
[70]
C. Matano, On the relation between the diffusion-coefficients and concentrations of solid metals (the nickel copper system), Jap. J. Phys. 8 (1933) 109-113.
Google Scholar
[71]
M. A. Dayananda and Y. H. Sohn, A new analysis for the determination of ternary interdiffusion coefficients from a single diffusion couple, Metall. Mater. Trans. A 30A (3) (1999) 535-543.
DOI: 10.1007/s11661-999-0045-5
Google Scholar
[72]
K. N. Kulkarni, A. M. Girgis, L. R. Ram-Mohan and M. A. Dayananda, A transfer matrix analysis of quaternary diffusion, Phil. Mag. 87 (6) (2007) 853-872.
DOI: 10.1080/14786430600993356
Google Scholar
[73]
A. Paul, A pseudo-binary approach to study interdiffusion and the Kirkendall effect in multicomponent systems, Phil. Mag. 93 (18) (2013) 2297-2315.
DOI: 10.1080/14786435.2013.769692
Google Scholar
[74]
T. Heumann, Zur Berechnung von Diffusionskoeffizienten bei ein-und mehrphasiger Diffusion in festen Legierungen, Z. Physik. Chem. 201 (1952) 168-189.
DOI: 10.1515/zpch-1952-20114
Google Scholar
[75]
A. G. Guy and J. Philibert, Determination of intrinsic diffusion coefficients in three-component solid solutions, Z. Metallkd. 50 (1965) 841-845.
DOI: 10.1515/ijmr-1965-561204
Google Scholar
[76]
S. Tripathi, V. Verma, T. W. Brown and K. N. Kulkarni, Effect of small amount of manganese on the interdiffusivities in Fe-Al alloys, J. Phase Equilib. Diffus. 38 (2) (2017) 135-142.
DOI: 10.1007/s11669-017-0529-8
Google Scholar
[77]
M. Salamon, D. Fuks, and H. Mehrer, Interdiffusion and Al self- diffusion in iron aluminides, Defect. Diff. Forum 237-240 (2005) 444-449.
DOI: 10.4028/www.scientific.net/ddf.237-240.444
Google Scholar
[78]
Y.H. Sohn and M.A. Dayananda, Interdiffusion, intrinsic diffusion and vacancy wind effect in Fe-Al alloys at 1000 °C, Scripta Mater. 40 (1) (1998) 79-84.
DOI: 10.1016/s1359-6462(98)00391-1
Google Scholar
[79]
P. Kiruthika and A. Paul, A pseudo-binary interdiffusion study in the β-Ni(Pt)Al phase, Phil. Mag. Letters 95 (3) (2015) 138-144.
DOI: 10.1080/09500839.2015.1020904
Google Scholar
[80]
T.D. Moyer and M.A. Dayananda, Diffusion in β2 Fe-Ni-Al alloys, Metall. Trans. A 7 (7) (1976) 1035-40.
DOI: 10.1007/bf02644070
Google Scholar
[81]
G. H. Cheng and M. A. Dayananda, Multiphase diffusion in Fe-Ni-Al system at 1000°C: II. Interdiffusion coefficients for β and γ alloys, Metall. Trans. A 10A (10) (1979) 1415-1419.
DOI: 10.1007/bf02812005
Google Scholar
[82]
T.O. Ziebold and R.E. Ogilvie, Ternary diffusion in copper-silver-gold alloys, Trans. TMS-AIME 239 (1967) 942-53.
Google Scholar
[83]
G. C. Hou, H. Wei, N. R. Zhao, X. F. Sun, H. R. Guan and Z. Q. Hu, Interdiffusion in the β phase region of the Ni-Al-Cr system, Scripta Mat. 58 (2008) 57-60.
DOI: 10.1016/j.scriptamat.2007.08.040
Google Scholar
[84]
Y. Liu and D. Liang, Comment on Interdiffusion in the β phase region of the Ni-Al-Cr system, Scripta Mat. 62 (2010) 629-631.
DOI: 10.1016/j.scriptamat.2009.10.003
Google Scholar
[85]
H. Wei and X. F. Sun, Reply to Comments on Interdiffusion in the β phase region of the Ni-Al-Cr system, Scripta Mat. 62 (2010) 632-634.
DOI: 10.1016/j.scriptamat.2010.01.030
Google Scholar
[86]
K. N. Kulkarni, B. Tryon, T. M. Pollock, and M. A. Dayananda, ternary diffusion in a RuAl-NiAl couple, J. Phase Equilib. Diff. 28 (6) (2007) 503-509.
DOI: 10.1007/s11669-007-9199-2
Google Scholar