Diffusion in B2 NiAl and FeAl Intermetallics and Their Alloys

Article Preview

Abstract:

Both FeAl and NiAl with B2 crystal structure are envisaged for their usage in high temperature applications and hence, availability of diffusion data in these intermetallics is crucial in designing their alloys and processes as well as deciding their in-service performance. A comprehensive overview of diffusion data available in B2 FeAl and NiAl and their alloys is provided in this article. Nearest neighbor vacancy jumps in B2 intermetallic lead to a local disorder in the lattice and hence it is not necessarily the unit step of diffusion in these structures. Several mechanisms of diffusion proposed in the literature are discussed including nearest neighbor jumps, next nearest neighbor jumps, six-jump vacancy cycle, triple defect and antisite bridge. Relevance of these mechanisms in FeAl and NiAl is discussed. An overview is given on the self-and solute diffusion and interdiffusion data available in both binary FeAl and NiAl. Due to wide solubility range of both FeAl and NiAl as well as their alloying requirements for improved properties, it becomes pertinent to study the multicomponent diffusion in the alloys based on these B2 itnermetallics. Hence, in the latter part of the article, various methods used for determining multicomponent diffusion data are reviewed. A detail overview is also provided on the diffusion studies available in literature on ternary alloys based on FeAl and NiAl with an emphasis on highlighting the diffusional interactions observed in these systems.

You might also be interested in these eBooks

Info:

Periodical:

Diffusion Foundations (Volume 13)

Pages:

98-135

Citation:

Online since:

November 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G. Sauthoff, Intermetallics, VCH, Verlagsgesellschaft, Weinheim, Germany, (1995).

Google Scholar

[2] G. K. Dey, Physical metallurgy of nickel aluminides, Sadhana 28 (1-2) (2003) 247-262.

DOI: 10.1007/bf02717135

Google Scholar

[3] N. Cinca, C. R. C. Lima, J. M. Guilemany, An overview of intermetallics research and application: Status of thermal spray coatings, J. Mater. Res. Technol. 2 (1) (2013) 75-86.

DOI: 10.1016/j.jmrt.2013.03.013

Google Scholar

[4] U. R. Kattner and B. P. Burton: ASM handbook Volume 3: Alloy Phase Diagrams, ASM Inernational, Metal Park, OH, (1991).

Google Scholar

[5] P. Nash, M. F. Singleton, and J. L. Murray: ASM handbook Volume 3: Alloy Phase Diagrams, ASM Inernational, Metal Park, OH, (1991).

Google Scholar

[6] C. T. Liu, J. A. Horton Jr., Effect of refractory alloying additions on mechanical properties of near-stoichiometric NiAl, Mater. Sci. Eng. A 192/193 (1995) 170-178.

DOI: 10.1016/0921-5093(94)03232-7

Google Scholar

[7] B. Tryon, F. Cao, K. S. Murphy, C. G. Levi and T. M. Pollock, Ruthenium-containing bond coats for thermal barrier coating systems, JOM (2006) 58 (1) 53-59.

DOI: 10.1007/s11837-006-0069-x

Google Scholar

[8] H. Mehrer, Diffusion in intermetallics, Mater. Trans. JIM 37 (6) (1996) 1259-1280.

DOI: 10.2320/matertrans1989.37.1259

Google Scholar

[9] M. Koiwa, Diffusion in Materials – History and recent developments, Mater. Trans. JIM 39 (12) (1998) 1169-1179.

DOI: 10.2320/matertrans1989.39.1169

Google Scholar

[10] Y. H. Sohn and M. A. Dayananda, Diffusion studies in the β (B2), β' (Bcc) and γ (Fcc) Fe-Ni-Al alloys at 1000 °C, Metall. Mater. Trans. A 33A 911) (2002) 3375-3392.

DOI: 10.1007/s11661-002-0326-8

Google Scholar

[11] Y. A. Chang, J. P. Neumann, Thermodynamics and defect structure of intermetallic phases with the B2 (CsCl) structure, Prog. Solid-State Chem. 14 (1982) 221-301.

DOI: 10.1016/0079-6786(82)90004-8

Google Scholar

[12] A. J. Bradley and A. Taylor, An X-ray analysis of the nickel-aluminide system, Proc. R. Soc. A 159 (1937) 56-72.

Google Scholar

[13] C.L. Flu, Y. Y. Ye, and M. H. Yoo, Equilibrium point defects in intermetallics with the B2 structure: NiAl and FeAl, Phys. Rev. B 48 (9) (1993) 6712-6715.

DOI: 10.1103/physrevb.48.6712

Google Scholar

[14] M. Fahnle, B. Meyer, G. Bester, J. Majer and N. Bornsen, Atomic defects and electronic structure of B2 FeAl, CoAl and NiAl, Def. Diff. For. 194-199 (2001) 279-286.

DOI: 10.4028/www.scientific.net/ddf.194-199.279

Google Scholar

[15] Y. Mishin, A. Y. Lozovoi, A. Alavi, Evaluation of diffusion mechanisms in NiAl by embedded-atom and first-principles calculations, Phys. Rev. B 67 (2003) 014201-1-9.

DOI: 10.1103/physrevb.67.014201

Google Scholar

[16] H. Bakker, N. A. Stolwijk and M. A. Hoetjes-ejkel, Diffusion kinetics and isotope effects for atomic migration via divacancies and triple defects in the CsCl (B2) structure, Phil. Mag. A 43 (2) (1981) 251-264.

DOI: 10.1080/01418618108239405

Google Scholar

[17] E. W. Elcock and C. W. McCombie, Vacancy diffusion in binary ordered alloys, Phys. Rev. 109 (2) (1958) 605-606.

DOI: 10.1103/physrev.109.605

Google Scholar

[18] P. Wynblatt, Diffusion mechanism in ordered body-centered cubic alloys, Acta Met. 15 (1967) 1453-1460.

DOI: 10.1016/0001-6160(67)90176-9

Google Scholar

[19] M. Arita, M. Koiwa and S. Ishioka, Diffusion mechanisms in ordered alloys a detailed analysis of six-jump vacancy cycle in the B2 type lattice, Acta Met. 37 (5) (1989) 1363-1374.

DOI: 10.1016/0001-6160(89)90167-3

Google Scholar

[20] S. Divinski and Chr. Herzig, On the six-jump cycle mechanism of self-diffusion in NiAl, Intermetallics 8 (2000) 1357-1368.

DOI: 10.1016/s0966-9795(00)00062-5

Google Scholar

[21] N. A. Stolwijk, M. van Gend and H. Bakker, Self-diffusion in the intermetallic compound CoGa, Phil. Mag. A 42 (6) (1980) 783-808.

DOI: 10.1080/01418618008239385

Google Scholar

[22] St. Frank, S. V. Divinski, U. Sodervall and Chr. herzig, Ni tracer diffusion in the B2-compound NiAl: influence of temperature and composition, Acta Mat. 49 (2001) 1399-1411.

DOI: 10.1016/s1359-6454(01)00037-4

Google Scholar

[23] C. R. Kao, Y. A. Chang, On the composition dependencies of self-diffusion coefficients in B2 intermetallic compounds, Intermetallics 1 (4) (1993) 237-250.

DOI: 10.1016/0966-9795(93)90035-t

Google Scholar

[24] I. V. Belova and G. E. Murch, The anti-structureal bridge mechanism for diffusion in ordered alloys of the B2 type, Intermetallics 6 (1998) 115-119.

DOI: 10.1016/s0966-9795(97)00053-8

Google Scholar

[25] Y. Mishin and D. Farkas, Atomistic simulation of point defects and diffusion in B2 NiAl Part II. diffusion mechanisms, Phil. Mag. A 75 (1) (1997) 187-199.

DOI: 10.1080/01418619708210290

Google Scholar

[26] I. V. Belova, M. E. Ivory and G. E. Murch, Diffusion in a model of an ordered alloy, Phil. Mag. A 72 (4) (1995) 871-880.

DOI: 10.1080/01418619508239940

Google Scholar

[27] S. V. Divinski and L. N. Larikov, Diffusion by anti-structure defects in non-stoichiometric intermetallic compunds with B2 and L12 structures, J. Phys: Condes. Matter 9 (1997) 7873-7883.

DOI: 10.1088/0953-8984/9/37/018

Google Scholar

[28] M. Athens, P. Bellon and G. Martin, Indentification of novel diffusion cycles in B2 ordered phases by Monte Carlo simulation, Phil. Mag. A 76 (3) (1997) 565-585.

DOI: 10.1080/01418619708214023

Google Scholar

[29] D. Kuc, G. Niewielski, I. Bednarczyk, Structure and plasticity in hot deformed FeAl intermetallic phase base alloy, Mater. Char. 60 (2009) 1185-1189.

DOI: 10.1016/j.matchar.2009.03.020

Google Scholar

[30] J. Cebulski, Applicaton of FeAl intermetallic phase matrix based alloys in the turbine components of a turbocharger, Metalurgija 54 (1) (2015) 154-156.

Google Scholar

[31] L. H. Shah and M. Ishak, Review of Research Progress on Aluminum-Steel Dissimilar Welding, Mater. Manuf. Process. 29 (2014) 928- 933.

DOI: 10.1080/10426914.2014.880461

Google Scholar

[32] M. M. Atabaki, M. Nikodinovski, P. Chenier, J. Ma, M. Harooni and R. Kovacevic, Welding of Aluminum Alloys to Steels: An Overview, Journal of Manufacturing Science and Production 14 (2) (2014) 59-78.

DOI: 10.1515/jmsp-2014-0007

Google Scholar

[33] A. Bahadur and O.N. Mohanty, Structural studies of hot dip aluminized coatings on mild steel, Mater. Trans. JIM 32 (11) (1991) 1053-1061.

DOI: 10.2320/matertrans1989.32.1053

Google Scholar

[34] R.W. Richards, R.D. Jones, P.D. Clements, H. Clarke, Metallurgy of continuous hot dip aluminising, Int. Mater. Rev. 39 (5) (1994) 191–212.

DOI: 10.1179/imr.1994.39.5.191

Google Scholar

[35] G. Vogl and B. Sepiol, Elementary diffusion jump of iron atoms in intermetallic phases studied by Mossbauer spectroscopy – I. Fe-Al close to equiatomic stoichiometry, Acta Met. 42 (9) (1994) 3175-3181.

DOI: 10.1016/0956-7151(94)90416-2

Google Scholar

[36] B. Sepiol and G. Vogl, Experimental arguments against six-jump cycle model of diffusion in FeAl, an intermetallic compound with B2 structure, Def. Diff. Forum 95-98 (1993) 831-838.

DOI: 10.4028/www.scientific.net/ddf.95-98.831

Google Scholar

[37] R. Drautz and M. Fahnle, The six-jump diffusion cycles in B2 compounds revisited, Acta Mater. 47 (8) (1999) 2437-2447.

DOI: 10.1016/s1359-6454(99)00106-8

Google Scholar

[38] R. Krachler, H. Ipser, B. Sepiol and G. Vogl, Diffusion mechanism and defect concentrations in β'-FeAl, an intermetallic compound with B2 structure, Intermetallics 3 (1995) 83-88.

DOI: 10.1016/0966-9795(94)p3690-p

Google Scholar

[39] R. Feldwisch, B. Sepiol and G. Vogl, Elementary diffusion jump of iron atoms in intermetallic phases studied by Mossbauer spectroscopy – II. from order to disorder, Acta Met. 43 (5) (1994) 2033-(2039).

DOI: 10.1016/0956-7151(94)00382-r

Google Scholar

[40] H. Mehrer, M. Eggersmann, A. Gude, M. Salamon, B. Sepiol, Diffusion in intermetallic phases of the Fe-Al and Fe-Si systems, Mater. Sci. Eng. A 239-240 (1997) 889-898.

DOI: 10.1016/s0921-5093(97)00680-1

Google Scholar

[41] M. Eggersmann, B. Sepiol, G. Vogl and H. Mehrer, Self-diffusion in iron-aluminides studied by tracer and Mosbauer techniques, Def. Diff. Forum 143-147 (1997) 339-344.

DOI: 10.4028/www.scientific.net/ddf.143-147.339

Google Scholar

[42] M. Eggersmann and H. Mehrer, Diffusion in intermetallic phases of the Fe-Al system, Phil. Mag. A 80 (5) (2000) 1219-1244.

DOI: 10.1080/01418610008212112

Google Scholar

[43] Z. S. Tokei, J. Bernardini, P. Gas and D. L. Beke, Volume diffusion of iron in Fe3Al: influence of ordering, Acta Mater. 45 (2) (1997) 541-546.

DOI: 10.1016/s1359-6454(96)00196-6

Google Scholar

[44] L. A. Girifalco, Vacancy concentration and diffusion in order-disorder alloys, J. Phys. Chem. Solids 24 (1964) 323-333.

DOI: 10.1016/0022-3697(64)90111-8

Google Scholar

[45] L. N. Larikov, V. V. Geichenko, V. M. Fal'chenko: Diffusion processes in ordered alloys, Oxonian, New Delhi (1981) 112-116.

Google Scholar

[46] R. Nakamura and Y. Iijima, Sel-diffusion of aluminium in the intermetallic compound Fe-48at%Al, Phil. Mag. 83 (4) (2003) 477-483.

DOI: 10.1080/0141861021000055655

Google Scholar

[47] K. Hirano and A. Hishinuma, Interdiffusion in α solid solution of the FeAl system, J. JIM Vol. 32 (6) (1968) 516-521.

Google Scholar

[48] K. Nishida, T. Yamamoto and T. Nagata, On the interdiffusion in α-solid solution of the Fe-Al system in Al vapor, Trans. JIM 12 (1971) 310-316.

DOI: 10.2320/matertrans1960.12.310

Google Scholar

[49] R. Nakamura, K. Takasawa, Y. Yamazaki, Y. Iijima, Single-phase interdiffusion in the B2 type intermetallic compounds NiAl, CoAl and FeAl, Intermetallics 10 (2002) 195-204.

DOI: 10.1016/s0966-9795(01)00125-x

Google Scholar

[50] H. C. Akuezue and D. P. Whittle, Interdiffusion in Fe-Al system: aluminizing, Met. Sci. 17 (1983) 27-31.

DOI: 10.1179/msc.1983.17.1.27

Google Scholar

[51] M. Weinhagen, B. Kohler, J. Wolff and Th. Hehenkamp, Interdiffusion in Fe-Al alloys, Def. Diff. Forum 143-147 (1997) 449-454.

DOI: 10.4028/www.scientific.net/ddf.143-147.449

Google Scholar

[52] R. W. Balluffi and L. L. Seigle, Diffusion in bimetal vapor-solid couples, J. App. Phys. 25 (5) (1954) 607-614.

DOI: 10.1063/1.1721698

Google Scholar

[53] D. B. Miracle, The physical and mechanical properties of NiAl, Acta mater. 41 (3) 649-684.

Google Scholar

[54] Z. Bai, D. Li, H. Peng, J. Wang, H. Guo, S. Gong, Suppressing the formation of SRZ in a Ni-based single crystal superalloy by RuNiAl diffusion barrier, Prog. Natur. Sci.: mater. Int. 22 92) (2012) 146-152.

DOI: 10.1016/j.pnsc.2012.03.007

Google Scholar

[55] G. F. Hancock and B. R. McDonnel, Diffusion in the intermetallic compound NiAl, Phys. Stat. Sol. A 4 (1971) 143-150.

DOI: 10.1002/pssa.2210040115

Google Scholar

[56] S. R. Butler, J. E. Hanlon and R. J. Wasilewski, Electric and magnetic properties of B2 structure compounds: NiAl and CoAl, J. Phys. Chem. Solids 30 (1969) 1929-(1934).

DOI: 10.1016/0022-3697(69)90168-1

Google Scholar

[57] M. J. Cooper, An investigation of the ordering of the phases CoAl and NiAl, Phil. Mag. 8 (89) (1963) 805-810.

DOI: 10.1080/14786436308213837

Google Scholar

[58] A. Lutz-Birk and H. Jacobi, Diffusion of 114mIn in NiAl, Scripta Met. 9 (1975) 761-765.

DOI: 10.1016/0036-9748(75)90236-7

Google Scholar

[59] Y. Minamino, Y. Koizumi and U. Inui, In diffusion in B2-type ordered NiAl intermetallic compound, Def. Diff. Forum 194-199 (2001) 517-522.

DOI: 10.4028/www.scientific.net/ddf.194-199.517

Google Scholar

[60] L. D. Hall, An analytical method of calculating variable diffusion coefficients, J. Che. Phys. 21 (1) (1953) 87-89.

Google Scholar

[61] A. E. Berkowitz, F. E. Jaumot Jr. and F. C. Nix, Diffusion of Co60 in some Ni-Al alloys containing excess vacancies, Phys. Rev. 95 (5) (1954) 1185-1189.

DOI: 10.1103/physrev.95.1185

Google Scholar

[62] Y. Minamino, Y. Yuichiro, N. Tsuji and T. Yamada, Co diffusion in a B2-type ordered NiAl compound, J. JIM 66 (2) (2002) 67-74.

Google Scholar

[63] Y. Minamino, Y. Koizumi, N. Tsuzi, M. Morioka, K. Hirao, Y. Shirai, Pt diffusion in B2-type ordered NiAl intermetallic compound and its diffusion mechanisms, Sci. Tech. Adv. Mater. 1 (2000) 237-249.

DOI: 10.1016/s1468-6996(01)00003-1

Google Scholar

[64] L. Onsager, Theories and problems of liquid diffusion, Ann. N. Y. Acad. Sci. 46 (5) (1845) 214-265.

Google Scholar

[65] M. A. Dayananda and C. W. Kim, Zero-flux planes and flux reversals in Cu-Ni-Zn diffusion couples, Metall. Trans. A 10A (1979) 1333-1339.

DOI: 10.1007/bf02811989

Google Scholar

[66] M. A. Dayananda, An analysis of concentration profiles for fluxes, diffusion depths and zero-flux planes in multicomponent diffusion, Metall. Trans. A 14 (9) (1983) 1851-1858.

DOI: 10.1007/bf02645555

Google Scholar

[67] V. Verma, A. Tripathi and K. N. Kulkarni, On interdiffusion in FeNiCoCrMn high entropy alloy, J. Phase Equilib. Diff. 38 (4) (2017) 445-456.

DOI: 10.1007/s11669-017-0579-y

Google Scholar

[68] J. S. Kirkaldy, J. E. Lane, and G. R. Mason, Diffusion in multicomponent metallic systems VII. Solutions of the multicomponent diffusion equations with variable coefficients, Can. J. Phys. 41 (1963) 2174-2186.

DOI: 10.1139/p63-212

Google Scholar

[69] L. Boltzmann, Integration of diffusion equations by variable coefficients, Ann. der Physik 53 (1894) 959-964.

Google Scholar

[70] C. Matano, On the relation between the diffusion-coefficients and concentrations of solid metals (the nickel copper system), Jap. J. Phys. 8 (1933) 109-113.

Google Scholar

[71] M. A. Dayananda and Y. H. Sohn, A new analysis for the determination of ternary interdiffusion coefficients from a single diffusion couple, Metall. Mater. Trans. A 30A (3) (1999) 535-543.

DOI: 10.1007/s11661-999-0045-5

Google Scholar

[72] K. N. Kulkarni, A. M. Girgis, L. R. Ram-Mohan and M. A. Dayananda, A transfer matrix analysis of quaternary diffusion, Phil. Mag. 87 (6) (2007) 853-872.

DOI: 10.1080/14786430600993356

Google Scholar

[73] A. Paul, A pseudo-binary approach to study interdiffusion and the Kirkendall effect in multicomponent systems, Phil. Mag. 93 (18) (2013) 2297-2315.

DOI: 10.1080/14786435.2013.769692

Google Scholar

[74] T. Heumann, Zur Berechnung von Diffusionskoeffizienten bei ein-und mehrphasiger Diffusion in festen Legierungen, Z. Physik. Chem. 201 (1952) 168-189.

DOI: 10.1515/zpch-1952-20114

Google Scholar

[75] A. G. Guy and J. Philibert, Determination of intrinsic diffusion coefficients in three-component solid solutions, Z. Metallkd. 50 (1965) 841-845.

DOI: 10.1515/ijmr-1965-561204

Google Scholar

[76] S. Tripathi, V. Verma, T. W. Brown and K. N. Kulkarni, Effect of small amount of manganese on the interdiffusivities in Fe-Al alloys, J. Phase Equilib. Diffus. 38 (2) (2017) 135-142.

DOI: 10.1007/s11669-017-0529-8

Google Scholar

[77] M. Salamon, D. Fuks, and H. Mehrer, Interdiffusion and Al self- diffusion in iron aluminides, Defect. Diff. Forum 237-240 (2005) 444-449.

DOI: 10.4028/www.scientific.net/ddf.237-240.444

Google Scholar

[78] Y.H. Sohn and M.A. Dayananda, Interdiffusion, intrinsic diffusion and vacancy wind effect in Fe-Al alloys at 1000 °C, Scripta Mater. 40 (1) (1998) 79-84.

DOI: 10.1016/s1359-6462(98)00391-1

Google Scholar

[79] P. Kiruthika and A. Paul, A pseudo-binary interdiffusion study in the β-Ni(Pt)Al phase, Phil. Mag. Letters 95 (3) (2015) 138-144.

DOI: 10.1080/09500839.2015.1020904

Google Scholar

[80] T.D. Moyer and M.A. Dayananda, Diffusion in β2 Fe-Ni-Al alloys, Metall. Trans. A 7 (7) (1976) 1035-40.

DOI: 10.1007/bf02644070

Google Scholar

[81] G. H. Cheng and M. A. Dayananda, Multiphase diffusion in Fe-Ni-Al system at 1000°C: II. Interdiffusion coefficients for β and γ alloys, Metall. Trans. A 10A (10) (1979) 1415-1419.

DOI: 10.1007/bf02812005

Google Scholar

[82] T.O. Ziebold and R.E. Ogilvie, Ternary diffusion in copper-silver-gold alloys, Trans. TMS-AIME 239 (1967) 942-53.

Google Scholar

[83] G. C. Hou, H. Wei, N. R. Zhao, X. F. Sun, H. R. Guan and Z. Q. Hu, Interdiffusion in the β phase region of the Ni-Al-Cr system, Scripta Mat. 58 (2008) 57-60.

DOI: 10.1016/j.scriptamat.2007.08.040

Google Scholar

[84] Y. Liu and D. Liang, Comment on Interdiffusion in the β phase region of the Ni-Al-Cr system, Scripta Mat. 62 (2010) 629-631.

DOI: 10.1016/j.scriptamat.2009.10.003

Google Scholar

[85] H. Wei and X. F. Sun, Reply to Comments on Interdiffusion in the β phase region of the Ni-Al-Cr system, Scripta Mat. 62 (2010) 632-634.

DOI: 10.1016/j.scriptamat.2010.01.030

Google Scholar

[86] K. N. Kulkarni, B. Tryon, T. M. Pollock, and M. A. Dayananda, ternary diffusion in a RuAl-NiAl couple, J. Phase Equilib. Diff. 28 (6) (2007) 503-509.

DOI: 10.1007/s11669-007-9199-2

Google Scholar