Interdiffusion Studies in β- and γ′-Intermetallic Phases of the Binary Ni-Al System

Article Preview

Abstract:

A critical review of interdiffusion processes in the binary β-NiAl and γ'-Ni3Al intermetallic compounds is presented. The molar volume changes associated with interdiffusion and partial molar volumes of the reacting species, required for the determination of the diffusion parameters, are found using lattice parameter data and, in the case of NiAl, the available information about vacancy concentration within homogeneity range of the β-phase. The presented treatment is purely phenomenological, and its use is convenient since no exlicit assumption of the underlying mechanisms required. A critical analysis of diffusion data for β-NiAl and γ'-Ni3Al ordered phases is followed by discussion of error sources encountered in the interdiffusion experiments. From Kirkendall marker experiments with incremental diffusion couples, information about relative mobilities of species in the intermetallic phases can be obtained, and tracer diffusion coefficients can be deduced using pertinent thermodynamic data on the nickel aluminides. Contribution of the vacancy wind effect to the calculated tracer diffusivities can also be estimated. The Kirkendall plane bifurcation in the Ni41.7Al58.3/Ni72.24Al27.76 reaction couple, in which a single-phased layer of β-NiAl intermatallic is formed during interdiffusion from its adjacent phases, is directly related to the growth of grains of the reaction product at a location in between interfaces with starting materials. This diffusion phenomenon can be rationallised using a corresponding Kirkendall velocity diagram. Changes in magnitude and sign of the difference in intrinsic mobilities of the components inside the homogeneity range of the β-NiAl lead to a velocity curve that makes bifurcation of the Kirkendall marker plane possible.

You might also be interested in these eBooks

Info:

Periodical:

Diffusion Foundations (Volume 13)

Pages:

56-97

Citation:

Online since:

November 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. Nash, M.F. Singleton, J.L. Murray, Al-Ni (Aluminum-Nickel), in: P. Nash (Ed. ), Phase Diagrams of Binary Nickel Alloys, ASM International, Materials Park, Ohio, 1991, pp.3-11.

Google Scholar

[2] M.M.P. Janssen, Reactiediffusie in het systeem Nikkel-Aluminium, PhD thesis, Eindhoven, The Netherlands, 1966 (in Dutch).

Google Scholar

[3] S. Divinski, Defects and Diffusion in Ordered Compounds, in: A. Paul, S. Divinski (Eds. ), Handbook of Solid State Diffusion-Diffusion Fundamentals and Techniques, Vol 1, Elsevier, 2017, pp.449-517.

DOI: 10.1016/b978-0-12-804287-8.00010-5

Google Scholar

[4] J. Philbert, Atom Movements. Diffusion and Mass Transport in Solids, Les Éditions de Physique, Les Ulis, (1991).

Google Scholar

[5] H. Mehrer, Diffusion in Solids, Springer-Verlag, Berlin, Heidelberg, (2007).

Google Scholar

[6] A. Paul, T. Laurila, V. Vuorinen, S.V. Divinski, Thermodynamics, Diffusion and the Kirkendall Effect in Solids, Springer International Publishing, Switzerland, (2014).

DOI: 10.1007/978-3-319-07461-0

Google Scholar

[7] L. Boltzmann, Zur Integration der Diffusionsgleichung bei Variabeln Diffusions-Coefficienten, Ann. Physik. 53 (1894) pp.959-964 (in German).

DOI: 10.1002/andp.18942891315

Google Scholar

[8] C. Matano, On the relation between the diffusion-coefficients and concentrations of solid metals (The Nickel-Copper system), Jap. J. Phys. 8 (1933) 109-113.

Google Scholar

[9] F. Sauer, V. Freise, Diffusion in Binären Gemischen mit Volumenänderung, Z. Electrochem. 66 (1962) 353-363 (in German).

Google Scholar

[10] C. Wagner, The evaluation of data obtained with diffusion couples of binary single-phase and multiphase systems, Acta Metall. 17 (1969) 99-107.

DOI: 10.1016/0001-6160(69)90131-x

Google Scholar

[11] F.J.A. den Broeder, A general simplification and improvement of the Matano-Boltzmann method in the determination of the interdiffusion coefficient in binary systems, Scripta Metall. 3 (1969) 321-326.

DOI: 10.1016/0036-9748(69)90296-8

Google Scholar

[12] F.J.J. van Loo, On the determination of diffusion coefficients in a binary metal system, Acta Metall. 18 (1970) 1107-1111.

DOI: 10.1016/0001-6160(70)90009-x

Google Scholar

[13] F.J.J. van Loo, Multiphase diffusion in binary and ternary solid-state systems, Prog. Solid St. Chem. 20 (1990) 47-99.

DOI: 10.1016/0079-6786(90)90007-3

Google Scholar

[14] M.J.H. van Dal, A.M. Gusak, Cs. Cserháti, A.A. Kodentsov, F.J.J. van Loo, Microstructural stability of the Kirkendall plane in solid-state diffusion, Phys. Rev. Lett. 86 (2001) 3352-3355.

DOI: 10.1103/physrevlett.86.3352

Google Scholar

[15] A.A. Kodentsov, A. Paul, M.J.H. van Dal, Cs. Cserháti, A.M. Gusak, F.J.J. van Loo, On the spatial stability and bifurcation of the Kirkendall plane during solid-state interdiffusion, Crit. Rev. Solid State Mater. Sci. 33 (2008) 210-232.

DOI: 10.1080/10408430802462958

Google Scholar

[16] Th. Heumann, G. Walther, Der Kirklendall-Effekt in Silber-Gold-Legirungen im gesamtem Konzentrtionsbereich, Z. Metallkd. 48 (1957) 151-157 (in German).

DOI: 10.1515/ijmr-1957-480401

Google Scholar

[17] L.S. Darken, Diffusion, mobility and their interrelation through free energy in binary metallic systems, Trans. AIME 175 (1948) 184-201.

DOI: 10.1007/s11661-010-0177-7

Google Scholar

[18] J. R. Manning, Diffusion and the Kirkendall shift in binary alloys, Acta Metall. 15 (1967) 817-826.

DOI: 10.1016/0001-6160(67)90363-x

Google Scholar

[19] M.M.P. Janssen, G.D. Rieck, Reaction diffusion and Kirkendall-effect in the Nickel-Aluminium system, Trans. TMS-AIME 239 (1967) 1372-1285.

Google Scholar

[20] S. Shankar, L.L. Seigle, Interdiffusion and intrinsic diffusion in the NiAl (δ) phase of the Al-Ni system, Metall. Trans. A 9A (1978) 1467-1476.

DOI: 10.1007/bf02661819

Google Scholar

[21] M. Watanabe, Z. Horita, M. Nemoto, Measurements of interdiffusion coefficient in Ni-Al system, Defect Diffusion Forum 143-147 (1997) 345-350.

DOI: 10.4028/www.scientific.net/ddf.143-147.345

Google Scholar

[22] T. Helander, J. Ågren, A phenomenological treatment of diffusion in Al-Fe and Al-Ni alloys having B2-b. c. c. ordered structure, Acta Mater. 47 (1999) 1141-1152.

DOI: 10.1016/s1359-6454(99)00010-5

Google Scholar

[23] S.P. Garg, G.B. Kale, R.V. Patil, T. Kundu, Thermodynamic interdiffusion coefficient in binary system with intermediate phases, Intermetallics 7 (1999) 901-908.

DOI: 10.1016/s0966-9795(98)00139-3

Google Scholar

[24] S. Kim and Y.A. Chang, An interdiffusion study of a NiAl alloy using single-phase diffusion couple, Metall. Mater. Trans. A 31A (2000) 1519-1524.

DOI: 10.1007/s11661-000-0162-7

Google Scholar

[25] R. Nakamura, K. Takasava, Y. Yamazaka, Y. Iijima, Single-phase interdiffusion in the B2 type intermetallic compounds NiAl, CoAl and FeAl, Intermetallics 10 (2002) 195-204.

DOI: 10.1016/s0966-9795(01)00125-x

Google Scholar

[26] R. Nakamura, Y. Iijima, M. Okada, Diffusion mechanisms in B2 NiAl phase studied by experiments on Kirkendall effect and interdiffusion under high pressures, Acta Mater. 51 (2003) 3861-3870.

DOI: 10.1016/s1359-6454(03)00210-6

Google Scholar

[27] H. Wei, X. Sun, Q. Zheng, H. Guan, Z. Hu, Estimation of interdiffusivity in the NiAl phase in Ni-Al binary system, Acta Mater. 52 (2004) 2645-2651.

DOI: 10.1016/j.actamat.2004.02.012

Google Scholar

[28] A. Paul, A.A. Kodentsov, F.J.J. van Loo, Bifurcation of the Kirkendall plane during interdiffusion in the intermetallic compound β-NiAl, Acta Mater. 52 (2004) 4041-4048.

DOI: 10.1016/j.actamat.2004.05.028

Google Scholar

[29] A. Paul, A.A. Kodentsov, F.J.J. van Loo, On diffusion in the β-NiAl phase, J. Alloy Comp. 403 (2005) 147-153.

Google Scholar

[30] L. Zhang, Y. Du, Q. Chen, I. Steinbach, B. Huang, Atomic mobilities and diffusivities in the fcc, L12 and B2 phases of the Ni-Al system, Int. J. Mat. Res. 101 (2010) 1461-1475.

DOI: 10.3139/146.110428

Google Scholar

[31] Q. Xu, A. van der Ven, The effect of large vacancy concentration on intrinsic and interdiffusion coefficient: A first-principle study of B2-NiAl, Acta Mater. 59 (2011) 1095-1104.

DOI: 10.1016/j.actamat.2010.10.040

Google Scholar

[32] P. Georgopoulos, J.H. Cohen, The defect structure and Debye-Waller factors vs. composition in β Ni1±xAl1±x, Scripa Metall. 11 (1971) 147-150.

DOI: 10.1016/0036-9748(77)90295-2

Google Scholar

[33] A. Taylor, N. J. Doyle, Further studies on the nickel–aluminum system. II. Vacancy filling in β and δ-phase alloys by compression at high temperatures, J. Appl. Cryst. 5 (1972) 210-215.

DOI: 10.1107/s0021889872009215

Google Scholar

[34] H. Jacobi, H.J. Engell, Defect structure in non-stoichiometric β-(Ni, Cu)Al, Acta Metall. 19 (1971) 701-711.

DOI: 10.1016/0001-6160(71)90025-3

Google Scholar

[35] A.J. Bradley, A. Taylor, An X-ray analysis of the Nickel-Aluminum system, Proc. Roy. Soc. (London) A159 (1937) 56-72.

Google Scholar

[36] L.P. Zelenin, A.N. Bashkatov, F.A. Sidorenko, P.V. Gel'd, Fizika Metallov i Metallovedenie 30 (1970) 740-746.

Google Scholar

[37] Y.A. Chang, J.P. Neumann, Thermodynamics and defect structure of intermetallic phases with the B2 (CsCl) structure, Prog. Solid St. Chem. 14 (1982) 221-301.

DOI: 10.1016/0079-6786(82)90004-8

Google Scholar

[38] S. Kim and Y.A. Chang, Use of lattice mole fraction to analyze interdiffusion data in strongly ordered triple-defect B2 intermetallic phases, Scripta Mater. 40 (1999) 1277-1281.

DOI: 10.1016/s1359-6462(99)00114-1

Google Scholar

[39] C.R. Kao, S. Kim, Y.A. Chang, Diffusional behavior in B2 intermetallic compounds, Mater. Sci. Eng. A 192/193 (1995) 965-979.

DOI: 10.1016/0921-5093(95)03344-0

Google Scholar

[40] S.V. Divinski, Chr. Herzig, Ni tracer self-diffusion, interdiffusion, and diffusion mechanism in NiAl, Defect Diffusion Forum 203-205 (2002) 177-192.

DOI: 10.4028/www.scientific.net/ddf.203-205.177

Google Scholar

[41] S.V. Divinski, St. Frank, U. Södervall, Chr. Herzig, Solute diffusion of Al-substituting elements in Ni3Al and the diffusion mechanism of the minority component, Acta Mater. 46 (1998) 4369-4380.

DOI: 10.1016/s1359-6454(98)00109-8

Google Scholar

[42] A. Steiner, K.L. Komarek, Thermodynamic activity of solid Nickel-Aluminum alloys, Trans. Met. Soc. AIME 230 (1964) 786-790.

Google Scholar

[43] R.E. Hanneman, A.U. Seybolt, Nickel activity data in the Nickel-Aluminum system at 1000 ºC, Trans. Met. Soc. AIME 245 (1969) 434-435.

Google Scholar

[44] D.R. Gaskell, Introduction to the Thermodynamics of Materials, Taylor & Francis, London, (1995).

Google Scholar

[45] N.C. Oforka, Thermodynamics of Aluminum-Nickel alloys, Ind. J. Chem. 25A (1986) 1027-1031.

Google Scholar

[46] J. Wang, H. -J. Engell, Investigation of the thermodynamic properties of Ni-Al intermetallic compounds by an EMF method, Steel Research 63 (1992) 320–323.

DOI: 10.1002/srin.199200527

Google Scholar

[47] N.S. Jacobson, Double Knudsen cell for alloy activity measurements by mass spectrometry, in: P. Nash, B. Sundman (Eds. ), Application of Thermodynamics in the Synthesis and Processing of Materials, The Minerals, Metals & Materials Society, Pennsylvania, 1995, pp.319-329.

Google Scholar

[48] K. Rzyman, Z. Moser, R. E. Watson, M. Weinert, Enthalpies of formation of AlNi: Experiment versus theory, J. Phase Equilibria 19 (1998) 106-112.

DOI: 10.1361/105497198770342562

Google Scholar

[49] E. -Th. Henig, H.L. Lukas, Kalorimetrische Bestimmung der Bildungsenthalpie und die Beschreibung der Fehlordnung der georgneten β-Phase (Ni, Cu)1-xAlx, Z. Metallkd. 66 (1975) 98-106. (in German).

DOI: 10.1515/ijmr-1975-660207

Google Scholar

[50] T. Ansara, N. Dupin. H.L. Lukas, B. Sundman, Thermodynamic assessment of the Al-Ni system, J. Alloy Comp. 247 (1997) 20-30.

DOI: 10.1016/s0925-8388(96)02652-7

Google Scholar

[51] W. Huang, Y. A. Chang, A thermodynamic analysis of the Ni-Al system, Intermetallics 6 (1998) 487-498.

Google Scholar

[52] L. Bencze, D.D. Raj, D. Kath, W.A. Oates, L. Singheiser, K. Hilpert, Thermodynamic properties and diffusion factor in B2-NiAl, Metall. Mater. Trans. B 35B (2004) 867-876.

DOI: 10.1007/s11663-004-0081-x

Google Scholar

[53] I.V. Belova, G.E. Murch, The Manning relations for atomic diffusion in a binary ordered alloy, Phil. Mag. 75 (1997) 1715-1723.

DOI: 10.1080/01418619708223752

Google Scholar

[54] T. Shimozaki, Y. Goda, Y. Wakamatsu, M. Onishi, Interdiffusion and the Kirkendall effect in Au-Zn ordered β¢ phase, Defect Diffusion Forum 95-98 (1993) 629-634.

DOI: 10.4028/www.scientific.net/ddf.95-98.629

Google Scholar

[55] G.F. Hancock, B.R. McDonnell, Diffusion in the intermetallic compound NiAl, Phys. stat. sol. (a) 4 (1973) 143-150.

Google Scholar

[56] St. Frank, S.V. Divinski, U. Södervall, Chr. Herzig, Ni tracer diffusion in the B2-compound NiAl: Influence of temperature and composition, Acta Mater. 49 (2001) 1399-1411.

DOI: 10.1016/s1359-6454(01)00037-4

Google Scholar

[57] Y. Minamino, Y. Koizumi, Y. Inui, In diffusion in B2-type ordered NiAl intermetallic compound, Defect Diffusion Forum 194-199 (2001) 517-522.

DOI: 10.4028/www.scientific.net/ddf.194-199.517

Google Scholar

[58] A. Lutze-Birk, H. Jacobi, Diffusion of 114mIn in NiAl, Scripta Metall. 9 (1975) 761-765.

DOI: 10.1016/0036-9748(75)90236-7

Google Scholar

[59] C. Ghosh, A. Paul, A physico-chemical approach in binary solid-state diffusion, Acta Mater. 55 (2007) 1927-(1939).

DOI: 10.1016/j.actamat.2006.10.051

Google Scholar

[60] C. Ghosh, A. Paul, Different phenomenological theories and their abilities to describe the interdiffusion process in a binary system during multiphase growth, Acta Mater. 57 (2009) 493-502.

DOI: 10.1016/j.actamat.2008.09.032

Google Scholar

[61] M. Koiwa, H. Numakura, S. Ishioka, Diffusion in L12 type intermetallic compounds, Defect Diffusion Forum 143-147 (1997) 209-222.

DOI: 10.4028/www.scientific.net/ddf.143-147.209

Google Scholar

[62] H. Numakura, T. Ikeda, M. Koiwa, A. Almazouzi, Self-diffusion mechanism in Ni-based L12 type intermetallic compounds, Phil. Mag. A 77 (1998) 887-909.

DOI: 10.1080/01418619808221218

Google Scholar

[63] G.F. Hancock, Diffusion of Nickel in alloys based on the intermetallic compound Ni3Al ( γ'), Phys. stat. sol. (a) 7 (1971) 535-540.

DOI: 10.1002/pssa.2210070228

Google Scholar

[64] M.B. Bronfin, G.S. Bulatov, I.A. Drugova, Self-diffusion of Ni in the intermetallic compound Ni3Al and pure Ni, Fizika Metallov i Metallovedenie 40 (1975) 363-366.

Google Scholar

[65] K. Hishino, S.J. Rothman, R.S. Averback, Tracer diffusion in pure and Boron-doped Ni3Al, Acta Metall. 36 (1988) 1271-1279.

DOI: 10.1016/0001-6160(88)90279-9

Google Scholar

[66] St. Frank, U. Södervall, Chr. Herzig, Self-diffusion of Ni in single and polycrystals of Ni3Al, Phys. stat. sol. (a) 191 (1971) 45-55.

DOI: 10.1002/pssb.2221910105

Google Scholar

[67] Y. Shi, G. Frohberg, H. Wever, Diffusion of 63Ni and 114mIn in the g'-phase Ni3Al, Phys. stat. sol. (a) 152 (1995) 361-375.

DOI: 10.1002/pssa.2211520205

Google Scholar

[68] C. Cserháti, I.A. Szabó, Zs. Márton, G. Erdélyi, Tracer diffusion of 63Ni in Ni3(Al, Ge) ternary intermetallic compound, Intermetallics 10 (2002) 887-892.

DOI: 10.1016/s0966-9795(02)00089-4

Google Scholar

[69] L.N. Larikov, V.V. Geichenko, V.M. Fal'chenko, Diffusion Processes in Ordered Alloys, Oxonian Press Pvt. Ltd., New Delhi, (1981).

Google Scholar

[70] M.M.P. Janssen, Diffusion in the Nickel-rich part of the Ni-Al system at 1000 º to 1300 ºC; Ni3Al layer growth, diffusion coefficients, and interface concentrations, Metall. Trans. 4 (1973) 1623-1633.

DOI: 10.1007/bf02668017

Google Scholar

[71] M. Watanabe, Z. Horita, T. Fujinami, T. Sano, M. Nemoto, Measurements of interdiffusion coefficient in Ni-Al system, Defect Diffusion Forum 95-98 (1993) 579-586.

DOI: 10.4028/www.scientific.net/ddf.95-98.579

Google Scholar

[72] M. Watanabe, Z. Horita, T. Sano, M. Nemoto, Electron microscopy study of Ni/Ni3Al diffusion-couple interface - II. Diffusivity measurements, Acta Metall. Mater. 42 (1994) 3389-3396.

DOI: 10.1016/0956-7151(94)90471-5

Google Scholar

[73] M. Watanabe, Z. Horita, M. Nemoto, Analytical electron microscopy study of diffusion-bonded multiphase system, Interface Science 4 (1997) 229-241.

DOI: 10.1007/bf00240244

Google Scholar

[74] T. Ikeda, A. Almazouzi, H. Namakura, M. Koiwa, W. Sprengel, H. Nakajima, Interdiffusion in Ni3Al, Defect Diffusion Forum 143-147 (1997) 275-278.

DOI: 10.4028/www.scientific.net/ddf.143-147.275

Google Scholar

[75] T. Ikeda, A. Almazouzi, H. Namakura, M. Koiwa, W. Sprengel, H. Nakajima, Single-phase interdiffusion in Ni3Al, Acta Mater. 46 (1998) 5369-5376.

DOI: 10.1016/s1359-6454(98)00209-2

Google Scholar

[76] K. Fujiwara, Z. Horita, Intrinsic diffusion in Ni3Al, Defect Diffusion Forum 194-199 (2001) 565-570.

DOI: 10.4028/www.scientific.net/ddf.194-199.565

Google Scholar

[77] K. Fujiwara, Z. Horita, Measurement of intrinsic diffusion coefficients of Al and Ni in Ni3Al using Ni/NiAl diffusion couples, Acta Mater. 50 (2002) 1571-1579.

DOI: 10.1016/s1359-6454(02)00018-6

Google Scholar

[78] K. Hilpert, M. Miller, H. Gerads, H. Nickel, Thermodynamic study of the liquid and solid alloys of the Nickel-rich part of the Al-Ni phase diagram including the AlNi3 phase, Ber. Bunsenges. Phys. Chem. 94 (1990) 40-47.

DOI: 10.1002/bbpc.19900940109

Google Scholar

[79] M. Koiwa, S. Ishioka, Random walks and correlation factor in diffusion in a three-dimensional lattice with coordination number 8, Phil. Mag. A 48 (1983) 1-9.

DOI: 10.1080/01418618308234882

Google Scholar

[80] I.V. Belova, G.E. Murch, Test of the validity of the Darken/Manning relation for diffusion in ordered alloys taking the L12 structure, Phil. Mag. A 78 (1998) 1085-1092.

DOI: 10.1080/01418619808239976

Google Scholar

[81] C. Cserháti, A. Paul, A.A. Kodentsov, M.J.H. van Dal, F.J.J. van Loo, Intrinsic diffusion in Ni3Al, Intermetallics 11 (2003) 291-297.

DOI: 10.1016/s0966-9795(02)00235-2

Google Scholar

[82] A. Paul, The Kirkendall Effect in Solid State Diffusion, PhD thesis, Eindhoven, The Netherlands, (2004).

Google Scholar

[83] Z. Qin, G. E. Murch, Computer simulation of chemical diffusion in a binary alloy with an equilibrium concentration of vacancies, Phil. Mag. A 71 (1995) 323-332.

DOI: 10.1080/01418619508244359

Google Scholar

[84] A.B. Lidiard, On thermodynamic factor in the theory of diffusion in alloys, Phil. Mag. Lett. 74 (1996) 43-49.

Google Scholar