Diffusion-Controlled Growth and Microstructural Evolution of Aluminide Coatings on Superalloys and Steel

Article Preview

Abstract:

The diffusion-controlled growth and microstructural evolution at the interface of aluminide coatings and different substrates such as Ni-base superalloys and steel are reviewed. Quantitative diffusion analysis indicates that the diffusion rates of components in the β-NiAl phase increases with the addition of Pt. This directly reflects on the growth rate of the interdiffusion zone. The thickness and formation of precipitates increase significantly with the Pt addition. Mainly Fe2Al5 phase grows during hot dip aluminization of steel along with few other phases with the very thin layer. Chemical vapor deposition process is being established for a better control of the composition of the Fe-aluminide coating on steel.

You might also be interested in these eBooks

Info:

Periodical:

Diffusion Foundations (Volume 13)

Pages:

167-195

Citation:

Online since:

November 2017

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] N.P. Padture, M. Gell, E.H. Jordan, Science 296 (5566), 280-284.

Google Scholar

[2] https: /www. phase-trans. msm. cam. ac. uk/2003/Superalloys/coatings/images/ compare_coatings. jpg.

Google Scholar

[3] D.K. Das, Prog. Mater. Sci. 58 (2013) pp.151-182.

Google Scholar

[4] G.R. Krishna, D.K. Das and S.V. Joshi, Mater. Sci. Eng. A 251 (1998) 40-47.

Google Scholar

[5] P. Deb, D.H. Boone, R. Streiff, R.D. Sisson Jr. (Ed. ), Surface modifications and coatings, ASM, Metals Park, Ohio (1986) 143–159.

Google Scholar

[6] R. Streiff, O. Cerclier, D.H. Boone, Surf. Coat . Technol. 32 (1987) 111–126.

Google Scholar

[7] H.M. Twancy, N. Sridhar, B.S. Tawabini, N.M. Abbas, T.N. Rhys-Jones, J. Mater. Sci. 27 (1992) 6463–6474.

Google Scholar

[8] G.J. Tatlock, T.J. Hurd, J.S. Punni, Platin. Met. Rev. 31 (1987) 26–31.

Google Scholar

[9] J.G. Fountain, F.A. Golightly, F.H. Scott, G.C. Wood, Oxid. Met. 10 (1976) 341–345.

Google Scholar

[10] G.R. Johnston, J.L. Cocking, W.C. Johnson, Oxid. Met. 23 (1985) 237–249.

Google Scholar

[11] J.H.W. De Wit, P.A. Van Manen, Mater. Sci. Forum. 154 (1994) 109–118.

Google Scholar

[12] J. Angenete, K. Stiller, Surf. Coat. Technol. 150 (2002) 107–118.

Google Scholar

[13] D.K. Das, V. Singh, S.V. Joshi, Oxid. Met. 57 (2002) 245–266.

Google Scholar

[14] D.K. Das, M. Roy, V. Singh, S.V. Joshi, Mater. Sci. Technol. 15 (1999) 1199–1208.

Google Scholar

[15] J. Bouhanek, O.A. Adesanya, F.H. Scott, P. Skeldon, D.G. Less, Mater. High Temp. 17 (2000) 185–196.

Google Scholar

[16] M.W. Chen, R.T. Ott, T.C. Hufnagel, P.K. Wright, K.G. Hemkar, Surf. Coat. Technol. 163–164 (2003) 25–30.

Google Scholar

[17] J.L. Smialek, R.F. Hehemann, Metall. Trans. 4 (1973) 1571–1575.

Google Scholar

[18] M.W. Chen, M.L. Glynn, R.T. Ott, T.C. Hufnagel, K.J. Hemker, Acta Mater. 51 (2003) 4279–4294.

Google Scholar

[19] V.K. Tolpygo, D.R. Clarke, Acta Mater., 48 (2000) p.3283–3293.

Google Scholar

[20] R. Panat, S. Zhang, K.J. Hsia, Acta Mater. 51 (2003) p.239–249.

Google Scholar

[21] V.K. Tolpygo, D.R. Clarke, Acta Mater. 52 (2004) p.5115–5127.

Google Scholar

[22] S. Hayashi, S.I. Ford, D.J. Young, D.J. Sordelet, M.F. Besser, and B. Gleeson, Acta Mater. 53 (2005) 3319–3328.

DOI: 10.1016/j.actamat.2005.03.046

Google Scholar

[23] N. Jaya, PhD Thesis, Micro-scale fracture testing of graded (Pt, Ni)Al bond coats, Indian Institute of Science, Bangalore, India, (2013).

Google Scholar

[24] S. Shankar, L.L. and Seigle, Met. Trans. A, 9A (1978) 1467-76.

Google Scholar

[25] M. Watanabe, Z. Horita and M. Nemoto, Defect Diffus. Forum 143-147 (1997) 345-50.

Google Scholar

[26] T. Helander and J. Ågren, Acta Mater. 47 (1999) 1141-52 4.

Google Scholar

[27] S. Kim and Y.A. Chang, Metall. Mater. Trans. A, 31A (2000) 1519-24.

Google Scholar

[28] A Paul, AA Kodentsov, FJJ Van Loo, Acta materialia 52 (2004) 4041-4048.

DOI: 10.1016/j.actamat.2004.05.028

Google Scholar

[29] A. Paul, A.A. Kodentsov and F.J.J. van Loo, J. Alloys and Compd. 403 (2005) 147-153.

Google Scholar

[30] P Kiruthika, A Paul, Philos. Mag. Lett. 95 (2015) 138-144.

Google Scholar

[31] A. Paul, Philos. Mag., 93 (2013) 2297-2315.

Google Scholar

[32] S Santra, A Paul, Scripta Materialia 103 (20150 18-21.

Google Scholar

[33] A Paul, Scripta Mater. 135 (2017) 153-157.

Google Scholar

[34] A. Paul, The Kirkendall effect in solid state diffusion, PhD thesis, Technical University of Eindhoven, (2004).

Google Scholar

[35] A Paul, T Laurila, V Vuorinen, SV Divinski, Thermodynamics, Diffusion and the Kirkendall Effect in Solids, Springer, Heidelberg, Germany, (2014).

DOI: 10.1007/978-3-319-07461-0

Google Scholar

[36] A Paul, MJH Van Dal, AA Kodentsov, FJJ Van Loo, Acta Mater. 52 (2004) 623-630.

DOI: 10.1016/j.actamat.2003.10.007

Google Scholar

[37] A Paul, AA Kodentsov, FJJ Van Loo, Intermetallics 14 (2006) 1428-1432.

Google Scholar

[38] C. Ghosh and A. Paul, Acta Mater. 55 (2007) 1927-(1939).

Google Scholar

[39] C Ghosh, A Paul, Intermetallics 16 (2008), 955-961.

Google Scholar

[40] C. Ghosh and A. Paul, Acta Mater. 57 (2009) 493-502.

Google Scholar

[41] A Paul, J. Mater. Sci. Mater. Electron. 22 (2011), 833-837.

Google Scholar

[42] S Santra, A Paul, Intermetallics 70 (2016) 1-6.

Google Scholar

[43] VA Baheti, S Kashyap, P Kumar, K Chattopadhyay, A Paul, Philos. Mag. 97 (2017) 1782-1802.

Google Scholar

[44] A. Paul, Estimation of diffusion coefficients in binary and pseudo-binary bulk diffusion couples, A Paul, S Divinski (Editors), Handbook of solid state diffusion; Diffusion fundamentals and techniques, Volume 1 (2017) 77-199.

DOI: 10.1016/b978-0-12-804287-8.00003-8

Google Scholar

[45] P Kiruthika, SK Makineni, C Srivastava, K Chattopadhyay, A Paul, Acta Materialia 105 (2016) 438-448.

DOI: 10.1016/j.actamat.2015.12.014

Google Scholar

[46] A. Paul, T. Laurila and S. Divinski, Defects, driving forces and definitions of diffusion coefficients in solids, A Paul, S Divinski (Editors), Handbook of solid state diffusion; Diffusion fundamentals and techniques, Volume 1 (2017) 1-53.

DOI: 10.1016/b978-0-12-804287-8.00001-4

Google Scholar

[47] S. Divinski, Defects and diffusion in ordered compounds, A Paul, S Divinski (Editors), Handbook of solid state diffusion; Diffusion fundamentals and techniques, Volume 1 (2017) 449-513.

DOI: 10.1016/b978-0-12-804287-8.00010-5

Google Scholar

[48] K.A. Marino and E.A. Carter, Intermetallics 18 (2010) 1470-1479.

Google Scholar

[49] Y. Minamino,Y. Koizumi,N. Tsuji,M. Morioka,K. Hiraoand Y Shirai, Sci. Technol. Adv. Mater. 1 (2000) 237-249.

Google Scholar

[50] VD Divya, U Ramamurty, A Paul, Philos. Mag. 93 (2013) 2190-2206.

Google Scholar

[51] K.Y. Tsai, M.H. Tsai and J.W. Yeh, Acta Materialia 61 (2013) 4887-4897.

Google Scholar

[52] X. G. Lu, B. Sundman and J. Ågren, CALPHAD 33 (2009) 450-456.

Google Scholar

[53] A. Steiner and K.L. Komarek, Trans. Met. Soc. AIME, 230 (1964) 786-90.

Google Scholar

[54] B. Mishra, P. Kiruthika and A. Paul,  J. Mater. Sci. Mater. Electron. 25 (2014) 1778-1782.

Google Scholar

[55] S. Santra, H. Dong, T. Laurila, A. Paul,  Proc. R. Soc. A 470 (2013) 20130464. (DOI: 10. 1098/rspa. 2013. 0464).

Google Scholar

[56] V.A. Baheti, R. Ravi and A. Paul,  J. Mater. Sci. Mater. Electron. 24 (2013) 2833-2838.

Google Scholar

[57] R. Ravi and A. Paul, Diffusion mechanism in the gold-copper system, J. Mater. Sci. Mater. Electron. 23 (2012) 2152-2156.

DOI: 10.1007/s10854-012-0729-2

Google Scholar

[58] S. Santra and A. Paul, Philos. Mag. Lett. 92 (2012) 373-383.

Google Scholar

[59] S. Santra, A. Mondal and A. Paul, Metall. Mater. Trans. 43 (2012) 791-795.

Google Scholar

[60] V.D. Divya, U. Ramamurty and A. Paul,  J. Mater. Res. 26 (2011) 2384-2393.

Google Scholar

[61] V.D. Divya, U. Ramamurty and A. Paul, Defect, Diffus. Forum 312-315 (2011) 466-471.

Google Scholar

[62] R. Ravi and A. Paul, Intermetallics 19 (2011) 426-428.

Google Scholar

[63] V.D. Divya, S.S.K. Balam, U. Ramamurty and A. Paul, Scripta Mater. 62 (2010) 621-624.

DOI: 10.1016/j.scriptamat.2010.01.008

Google Scholar

[64] V.D. Divya, U. Ramamurty and A. Paul, Intermetallics 18 (2010) 259-266.

Google Scholar

[65] P Kiruthika, SK Makineni, C Srivastava, K Chattopadhyay, A Paul, Acta Materialia 105 (2017) 512.

Google Scholar

[66] C.R. Kao and Y.A. Chang, Intermetallics, 1 (1993) 237-250.

Google Scholar

[67] St. Frank, S.V. Divinski, U. Södervall and Chr. Herzig, Acta Mater. 49 (2001) 1399-1411.

Google Scholar

[68] C. Cserhati, U. Ugaste, M.J.H. van Dal, N. Lousberg, A.A. Kodentsov and F.J.J. van Loo, Defect Diffus. Forum 194-199 (2001) 189-194.

DOI: 10.4028/www.scientific.net/ddf.194-199.189

Google Scholar

[69] D. Divya, U. Ramamurty and A. Paul, Philos. Mag. 92 (2012) 2187-2214.

Google Scholar

[70] C. M. F. Rae and R. C. Reed, Acta mater. 49 (2001) 4113–4125.

Google Scholar

[71] W.J. Cheng, C. J. Wang, Surf. Coat. Technol. 204 (2009) 824–828.

Google Scholar

[72] S. Kobayashi, T. Yakou, Mater. Sci. Eng. A 338 (2002) 44-53.

Google Scholar

[73] Y.Y. Chang, C.C. Tsaur, J.C. Rock, Surf. Coat. Technol. 200 (2006) 6588-6593.

Google Scholar

[74] C.J. Wang, S.M. Chen, Surf. Coat. Technol. 200 (2006) 6601-6606.

Google Scholar

[75] H. Glasbrenner, H.U. Borgstedt, J. Nucl. Mater. 212–215 (1994) 1561-1565.

Google Scholar

[76] A. Hayashi, C.R. Kao, Y.A. Chang, Sctipta Mater. 37 (1997) 393-398.

Google Scholar

[77] J.H. Gülpen, A.A. Kodentsov, F.J.J. van Loo, Z. Metallkd. 86 (1995) 530-539.

Google Scholar

[78] K. Bhanumurthy, W. Krauss, J. Konys, Fusion Sci. Technol.,  65 (2014) 262-272.

Google Scholar

[79] B.A. Pint,Y. Zhang, P.F. Tortorelli, J.A. Haynes and I.G. Wright, Mater. High Temp. 18 (2001) 185-192.

Google Scholar