Ceramic Composites for Aerospace Applications

Article Preview

Abstract:

Ceramic composites is playing crucial role to accomplish highly efficiently and cost effective equipment for aerospace industry. The instigation of ceramics into aircraft industry is a promising step towards virtuous future. Ceramics has a key role in innovation of highly competent material for space travel which is highly economical and environmentally sustainable. Advancement in making fuel efficient engines are necessity in present scenario due to the harmful emissions releases in the environment by burning of fuel to power up engine. The high temperature application of composites makes it very attractive for aerospace applications. This light weight material has potential to thrust spacecraft upto ten times quicker with the identical fuel consumption, therefore significantly depreciating size of vehicle and increasing travel distance. The implementation of ceramics into jet engines and turbines increase the efficiency of engine due to its lighter weight and better thermal capabilities. A jet engine employing ceramic composites has manifest 15% more fuel saving when compared to the simple nickel based alloys. Hence, ceramic composites can replace nickel based alloys which has been a promising candidate for the engines of commercial aircrafts. Some disadvantages has been also discussed that is brittle failure and limited thermal and shock resistance.

You might also be interested in these eBooks

Info:

Periodical:

Diffusion Foundations (Volume 23)

Pages:

31-39

Citation:

Online since:

August 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Bhargava, A.K. Engineering Materials; PHI Learning Private Limited: New Delhi, (2011).

Google Scholar

[2] Bhosale, S.K.B.; Pawade, R.S.; Brahmankar, P.K. Effect of process parameters on MRR, TWR and surface topography in ultrasonic machining of alumina-zirconia ceramic composite. Ceramics International 2014, 40, 12831–12836.

DOI: 10.1016/j.ceramint.2014.04.137

Google Scholar

[3] M. Rosso, Ceramic and metal matrix composites: route and properties, Journal of Materials Processing Technology · June 2006,.

DOI: 10.1016/j.jmatprotec.2005.04.038

Google Scholar

[4] Y. Liang, S. P. Dutta, Technovation 21, 2001, 61–65.

Google Scholar

[5] Kaya, H. The application of ceramic-matrix composites to the automotive ceramic gas turbine. Composites Science and Technology 1999, 59, 861–872.

DOI: 10.1016/s0266-3538(99)00016-0

Google Scholar

[6] Chawla, K.K. The high-temperature application of ceramic-matrix composites. International Journal of Minerals, Metallurgy, and Materials 1995, 47 (12), 19–21.

Google Scholar

[7] Colombo, P.; Sglavo, V.; Pippel, E.; Woltersdorf, J. Joining of reaction-bonded silicon carbide using a preceramic polymer. Journal of Materials Science 1998, 33, 2405–2412.

DOI: 10.1023/a:1004312109836

Google Scholar

[8] Lim, D.S.; You, D.H.; Choi, H.J.; Lim, S.H.; Jang, H. Effect of CNT distribution on tribological behavior of alumina-CNT composites. Wear 2005, 259 (1–6), 539–544.

DOI: 10.1016/j.wear.2005.02.031

Google Scholar

[9] Jianxin, D.; Taichiu, L. Surface integrity in electro-discharge machining, ultrasonic machining and diamond saw cutting of ceramic composites. Ceramics International 2000, 26, 825–830.

DOI: 10.1016/s0272-8842(00)00024-9

Google Scholar

[10] Cho, J.; Boccaccini, A.R.; Shaffer MSP. Ceramic matrix composites containing carbon nanotubes. Journal of Materials Science 2009, 44, 1934- (1951).

DOI: 10.1007/s10853-009-3262-9

Google Scholar

[11] Rahaman, M.N. Ceramic Processing and Sintering. Marcel Dekker: New York, Second Edition, (2003).

Google Scholar

[12] Maitra, S. Advances in Ceramic Matrix Composites. Woodhead Publishing Limited: Cambridge, (2014).

Google Scholar

[13] Dariel, M.P.; Frage, N. Reaction bonded boron carbide: recent developments. Advances in Applied Ceramics 2012, 111 (5&6), 301–310.

DOI: 10.1179/1743676111y.0000000078

Google Scholar

[14] Weimer, A.; Besmann, T.; Stinton, D.; Lowden, R.; Lee, W. Carbide. Nitride Boride Material Synthesis Process; Chapman & Hall: New York, 1997; 547–577.

DOI: 10.1007/978-94-009-0071-4_22

Google Scholar

[15] Lazzeri, A. CVI Processing of Ceramic, Ceramics and Composites Processing Methods. John Wiley & Sons Inc.: Hoboken, NJ; 2012, 313–349.

DOI: 10.1002/9781118176665.ch9

Google Scholar

[16] Yi, J.; Xue, W.J.; Xie, Z.P.; Chen, J.; Zhu, L. A novel processing route to develop alumina matrix nanocomposites reinforced with multi-walled carbon nanotubes. Materials Research Bulletin 2015, 64, 323–326.

DOI: 10.1016/j.materresbull.2015.01.017

Google Scholar

[17] Wang, F.C.; Zhang, Z.H.; Sun, Y.J.; Liu, Y.; Hu, Z.Y.; Wang, H.; Korznikov, A.V.; Korznikova, E.; Liu, Z.F.; Osamu, S. Rapid and low temperature spark plasma sintering synthesis of novel carbon nanotube reinforced titanium matrix composites. Carbon 2015.

DOI: 10.1016/j.carbon.2015.08.061

Google Scholar

[18] Yang, H.; Zhou, X.; Yu, J.; Wang, H.; Huang, Z. Microwave and conventional sintering of SiC/SiC composites: Flexural properties and microstructures. Ceramics International 2015, 41 (9), 11651–11654.

DOI: 10.1016/j.ceramint.2015.05.126

Google Scholar

[19] Sarkar, S.; Das, P.K. Microstructure and physicomechanical properties of pressureless sintered multiwalled carbon nanotube/alumina nanocomposites. Ceramics International 2012, 38, 423–432.

DOI: 10.1016/j.ceramint.2011.07.023

Google Scholar

[20] Zhang, S.C.; Fahrenholtz, W.G.; Hilmas, G.E.; Yadlowsky, E.J. Pressureless sintering of carbon nanotube-Al2O3 composites. Journal of the European Ceramic Society 2010, 30 (6), 1373–1380.

DOI: 10.1016/j.jeurceramsoc.2009.12.005

Google Scholar

[21] Sarkar, S.; Das, P.K. Effect of sintering temperature and nanotube concentration on microstructure and properties of carbon nanotube/ alumina nanocomposites. Ceramics International 2014, 40, 7449–7458.

DOI: 10.1016/j.ceramint.2013.12.092

Google Scholar

[22] Lee, K.Y.; Case, E.D. Microwave sintering of alumina matrix zirconia composites using a single-mode microwave cavity. Journal of Materials Science Letters 1999, 18, 201–203.

Google Scholar

[23] Yin, L.; Fan-Fei, M.; Jin-Bo, Z.; Ming-Xu, Z. Effect of nanometer Al2O3 powder on microstructure and properties of alumina ceramics by microwave sintering. Materials Science and Engineering: A-Structural Mater Prop Microstruct Process 2012, 546, 328–331.

DOI: 10.1016/j.msea.2012.03.072

Google Scholar

[24] Bao, R.; Yi, J. Effect of sintering atmosphere on microwave prepared WC–8wt. %Co cemented carbide. International Journal of Refractory Metals and Hard Materials 2013, 41, 315–321.

DOI: 10.1016/j.ijrmhm.2013.05.003

Google Scholar

[25] Jiang, D.; Thomson, K.; Kuntz, J.D.; Ager, J.W.; Mukherjee, A.K. Effect of sintering temperature on a single-wall carbon nanotubetoughened alumina-based nanocomposites. Scripta Materialia 2007, 56, 959–962.

DOI: 10.1016/j.scriptamat.2007.02.007

Google Scholar

[26] Kumari, L.; Zhang, T.; Du, G.H.; Li, W.Z.; Wang, Q.W.; Datye, A.; Wu, K.H. Thermal properties of CNT-Alumina nanocomposites. Composites Science and Technology 2008, 68, 2178–2183.

DOI: 10.1016/j.compscitech.2008.04.001

Google Scholar

[27] Inam, F.; Yan, H.; Jayaseelan, D.D.; Peijs, T.; Reece, M.J. Electrically conductive alumina – carbon nanocomposites prepared by Spark Plasma Sintering. Journal of the European Ceramic Society 2010, 30, 153–157.

DOI: 10.1016/j.jeurceramsoc.2009.05.045

Google Scholar

[28] Tapasztó, O.; Kun, P.; Wéber, F.; Gergely, G.; Balázsi, K.; Pfeifer, J.; Arató, P.; Kidari, A.; Hampshire, S.; Balázsi, C. Silicon nitride based nanocomposites produced by two different sintering methods. Ceramics International 2011, 37 (8), 3457–3461.

DOI: 10.1016/j.ceramint.2011.05.150

Google Scholar

[29] Shimoda, K.; Hinoki, T.; Kohyama, A. Effect of carbon nanofibers (CNFs) content on thermal and mechanical properties of CNFs/ SiC nanocomposites. Composites Science and Technology 2010, 70, 387–392.

DOI: 10.1016/j.compscitech.2009.11.013

Google Scholar