Graphene Composites

Article Preview

Abstract:

This chapter reviews recent development of graphene-based polymer composites. The formation of graphene oxide and graphene are a vital two dimensional (2D) material has received a lot of research interest in commercialization aspect due to its excellent electrical, thermal as well as mechanical properties at very low filler content. In this manner, utilization of graphene-based polymer composites with different polymer matrixes have been attracted increasing attention in recent years for both fundamental studies and applied research into industrial applications in many fields. Herein, novel properties of polymer (epoxy, polystyrene, and PANI) / graphene composites will be reviewed along with detailed examples drawn from the scientific literature. Keywords: Graphene-based polymer composites, thermo-mechanical properties, two dimensional (2D) materials

You might also be interested in these eBooks

Info:

Periodical:

Diffusion Foundations (Volume 23)

Pages:

57-63

Citation:

Online since:

August 2019

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D.D. Chung, Review graphite. J. Mater. Sci., 37 (2002) 1475-1489.

Google Scholar

[2] S. Yuan, Q. Tang, B. Hu, C. Ma, J. Duan, J., B. He, Efficient quasi-solid-state dye-sensitized solar cells from graphene incorporated conducting gel electrolytes. J. Mater. Chem. A, 2 (2014) 2814-2821.

DOI: 10.1039/c3ta14385f

Google Scholar

[3] F.W. Low, C.W. Lai, Recent developments of graphene-TiO2 composite nanomaterials as efficient photoelectrodes in dye-sensitized solar cells: A review, Renew. Sustainable Energy Rev., 82 (2018) 103–125.

DOI: 10.1016/j.rser.2017.09.024

Google Scholar

[4] F.W. Low, C.W. Lai, S.B. Abd Hamid, Surface modification of reduced graphene oxide film by Ti ion implantation technique for high dye-sensitized solar cells performance, Ceram. Int., 43 (2017) 625-633, (2017).

DOI: 10.1016/j.ceramint.2016.09.205

Google Scholar

[5] C.W. Lai, F.W. Low, S.W. Chong, C.P.P Wong, S.Z. Mohamed Siddick, J.C. Juan, S.B. Abdul Hamid, An Overview: recent development of titanium dioxide loaded graphene nanocomposite film for solar application, Curr. Org. Chem., 19 (2015) 1882-1895.

DOI: 10.2174/1385272819666150605230240

Google Scholar

[6] Z. Liu, K. Suenaga, P.J. Harris, S. Iijima, Open and closed edges of graphene layers. Phys. Rev. Lett., 102 (2009) 015501.

DOI: 10.1103/physrevlett.102.015501

Google Scholar

[7] J.L. Dos Santos, N. Peres, A.C. Neto, Graphene bilayer with a twist: electronic structure. Phys. Rev. Lett., 99 (2007) 256802.

DOI: 10.1103/physrevlett.99.256802

Google Scholar

[8] J.H. Warner, F. Schaffel, M. Rummeli, A. Bachmatiuk, Graphene: fundamentals and emergent applications: Newnes., UK, (2013).

Google Scholar

[9] E. McCann, M. Koshino, The electronic properties of bilayer graphene. Rep. Prog. Phys., 76 (2013) 056503.

DOI: 10.1088/0034-4885/76/5/056503

Google Scholar

[10] A.C. Neto, F. Guinea, N.M. Peres, K.S. Novoselov, A.K. Geim, The electronic properties of graphene. Rev. Mod. Phys., 81 (2009) 109.

DOI: 10.1103/revmodphys.81.109

Google Scholar

[11] A. Rozhkov, A. Sboychakov, A. Rakhmanov, F. Nori, Electronic properties of graphene-based bilayer systems. Phys. Rep., 648 (2016) 1-104.

DOI: 10.1016/j.physrep.2016.07.003

Google Scholar

[12] P. Zhu, A.S. Nair, P. Shengjie, Y. Shengyuan, S. Ramakrishna, Facile fabrication of TiO2–graphene composite with enhanced photovoltaic and photocatalytic properties by electrospinning. ACS Appl. Mater. Interfaces, 4 (2012) 581-585.

DOI: 10.1021/am201448p

Google Scholar

[13] G. Fugallo, A. Cepellotti, L. Paulatto, M. Lazzeri, N. Marzari, F. Mauri, Thermal conductivity of graphene and graphite: collective excitations and mean free paths. Nano Lett., 14 (2014) 6109-6114.

DOI: 10.1021/nl502059f

Google Scholar

[14] X. Guo, G. Lu, J. Chen, Graphene-based materials for photoanodes in dye-sensitized solar cells. Front. Energy Res., 3 (2015) 50.

DOI: 10.3389/fenrg.2015.00050

Google Scholar

[15] E. Pop, V. Varshney, A.K. Roy, Thermal properties of graphene: Fundamentals and applications. MRS Bull., 37 (2012) 1273-1281.

DOI: 10.1557/mrs.2012.203

Google Scholar

[16] A. Aghigh, V. Alizadeh, H. Wong, M.S. Islam, N. Amin, M. Zaman, Recent advances in utilization of graphene for filtration and desalination of water: A review. Desalination, 365 (2015) 389-397.

DOI: 10.1016/j.desal.2015.03.024

Google Scholar

[17] J.D. Roy-Mayhew, I.A. Aksay, Graphene materials and their use in dye-sensitized solar cells. Chem. Rev., 114 (2014) 6323-6348.

DOI: 10.1021/cr400412a

Google Scholar

[18] F. Bonaccorso, Z. Sun, T. Hasan, A. Ferrari, Graphene photonics and optoelectronics. Nat. Photonics, 4 (2010) 611-622.

DOI: 10.1038/nphoton.2010.186

Google Scholar

[19] Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk, J.R. Potts, R.S. Ruoff, Graphene and graphene oxide: synthesis, properties, and applications. Adv. Mater., 22 (2010) 3906-3924.

DOI: 10.1002/adma.201001068

Google Scholar

[20] A.L. Moore, L. Shi, Emerging challenges and materials for thermal management of electronics. Mater. Today, 17 (2014) 163–174.

Google Scholar

[21] H. Chen, V.V. Ginzburg, J. Yang, Y. Yang, W. Liu, Y. Huang, L. Du, B. Chen, Thermal conductivity of polymer-based composites: fundamentals and applications. Prog. Polym. Sci. 59 (2016) 41–85.

DOI: 10.1016/j.progpolymsci.2016.03.001

Google Scholar

[22] X. Huang, P. Jiang, T. Tanaka, A review of dielectric polymer composites with high thermal conductivity. IEEE Electr. Insul. Mag. 27 (2011) 8–16.

DOI: 10.1109/mei.2011.5954064

Google Scholar

[23] Z. Han, A. Fina, Thermal conductivity of carbon nanotubes and their polymer nanocomposites: A review. Prog. Polym. Sci. 36 (2011) 914–944.

DOI: 10.1016/j.progpolymsci.2010.11.004

Google Scholar

[24] S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Graphene-based composite materials. Nature, 442 (2006) 282–286.

DOI: 10.1038/nature04969

Google Scholar

[25] S. Ansari E.P. Giannelis, Functionalized graphene sheetpoly (vinylidene fluoride) conductive nanocomposites. J. Polym. Sci. Part. B. Polym. Phys., 47 (2009) 888–897.

DOI: 10.1002/polb.21695

Google Scholar

[26] T. Ramanathan, A.A. Abdala, S. Stankovich, D.A. Dikin, M.H. Alonso, R.D. Piner, et al. Functionalized graphene sheets for polymer nanocomposites. Nat. Nanotechnol., 3 (2008) 327–331.

DOI: 10.1038/nnano.2008.96

Google Scholar

[27] Y.R. Lee, A.V. Raghu, H.M. Jeong, B.K. Kim, Properties of waterborne polyurethane/functionalized graphene sheet nanocomposites prepared by an in situ method. Macromol. Chem. Phys., 210 (2009) 1247–1254.

DOI: 10.1002/macp.200900157

Google Scholar

[28] Y. Xu, Y. Wang, L. Jiajie, Y. Huang, Y. Ma, X. Wan, et al. A hybrid material of graphene and poly(3,4-ethyldioxythiophene) with high conductivity, flexibility, and transparency. Nano. Res. 2 (2009) 343–348.

DOI: 10.1007/s12274-009-9032-9

Google Scholar

[29] H. Quan, B. Zhang, Q. Zhao, R.K.K. Yuen, R.K.Y. Li, Facile preparation and thermal degradation studies of graphite nanoplatelets (GNPs) filled thermoplastic polyurethane (TPU) nanocomposites. Compos. Part A, 40 (2009) 1506–1513.

DOI: 10.1016/j.compositesa.2009.06.012

Google Scholar

[30] G. Eda, M. Chhowalla, Graphene-based composite thin films for electronics. Nano Lett. 9 (2009) 814–818.

DOI: 10.1021/nl8035367

Google Scholar

[31] J. Liang, Y. Xu, Y. Huang, L. Zhang, Y. Wang, Y. Ma, et al. Infrared triggered actuators from graphene-based nanocomposites. J. Phys. Chem., 113 (2009) 9921–9927.

DOI: 10.1021/jp901284d

Google Scholar

[32] H. Kim, C.W. Macosko, Processing–property relationships of polycarbonate/graphene nanocomposites. Polymer, 50 (2009) 3797–3809.

DOI: 10.1016/j.polymer.2009.05.038

Google Scholar

[33] L. Vickery, A.J. Patil, S. Mann, Fabrication of graphene-polymer nanocomposites with higher-order three-dimensional architectures. Adv. Mater., 21 (2009) 2180–2184.

DOI: 10.1002/adma.200803606

Google Scholar

[34] A. Yasmin, J.J. Luo, I.M. Daniel, Processing of expanded graphite reinforced polymer nanocomposites. Compos. Sci. Technol., 66 (2006) 1182–1189.

DOI: 10.1016/j.compscitech.2005.10.014

Google Scholar

[35] J.K. Park, I.H. Dob, P. Askeland, L.T. Drzal, Electrodeposition of exfoliated graphite nanoplatelets onto carbon fibers and properties of their epoxy composites. Compos. Sci. Technol.,68 (2008) 1734–1741.

DOI: 10.1016/j.compscitech.2008.02.002

Google Scholar

[36] J. Li, M.L. Sham, J.K. Kim, G. Marom, Morphology and properties of UV/ozone treated graphite nanoplatelet/epoxy nanocomposites. Comp. Sci. Technol., 67 (2007) 296–305.

DOI: 10.1016/j.compscitech.2006.08.009

Google Scholar

[37] N. Jovic, D. Dudic, A. Montone, M.V. Antisari, M. Mitric, V. Djokovic. Temperature dependence of the electrical conductivity of epoxy/expanded graphite nanosheet composites. Scripta Mater., 58 (2008) 846–849.

DOI: 10.1016/j.scriptamat.2007.12.041

Google Scholar

[38] J. Li, L. Vaisman, G. Marom J.K. Kim, Br treated graphite nanoplatelets for improved electrical conductivity of polymer composites. Carbon, 45 (2007) 744–750.

DOI: 10.1016/j.carbon.2006.11.031

Google Scholar

[39] A. Yu, P. Ramesh, X. Sun, E. Bekyarova, M.E. Itkis, R.C. Haddon. Enhanced thermal conductivity in a hybrid graphite nanoplatelet-carbon nanotube filler for epoxy composites. Adv. Mater., 20 (2008) 4740–4744.

DOI: 10.1002/adma.200800401

Google Scholar

[40] S. Ganguli, A.K. Roy, D.P. Anderson. Improved thermal conductivity for chemically functionalized exfoliated graphite/epoxy composites. Carbon, 46 (2008) 806–817.

DOI: 10.1016/j.carbon.2008.02.008

Google Scholar

[41] W. Zheng, X. Lu, S.C. Wong, Electrical and mechanical properties of expanded graphite-reinforced high-density polyethylene. J. Appl. Polym. Sci., 91 (2004) 2781–2788.

DOI: 10.1002/app.13460

Google Scholar

[42] J.F. Zou, Z.Z. Yu, Y.X. Pan, X.P. Fang, Y.C. Ou. Conductive mechanism of polymer/graphite conducting composites with low percolation threshold. J. Polym. Sci. Part B Polym. Phys., 40 (2002) 954–963.

DOI: 10.1002/polb.10141

Google Scholar

[43] W.P. Wanga, C.Y. Pana. Preparation and characterization of polystyrene/graphite composite prepared by cationic grafting polymerization. Polymer, 45 (2004) 3987–3995.

DOI: 10.1016/j.polymer.2004.04.023

Google Scholar

[44] M. Xiao, L. Sun, J. Liu, Y. Li, K. Gong, Synthesis and properties of polystyrene/graphite nanocomposites. Polymer, 43 (2002) 2245–2248.

DOI: 10.1016/s0032-3861(02)00022-8

Google Scholar

[45] H. Kim, H.T. Hahn, L.M. Viculis, S. Gilje, B..B. Kaner. Electrical conductivity of graphite/polystyrene composites made from potassium intercalated graphite. Carbon, 45 (2007) 1578–1582.

DOI: 10.1016/j.carbon.2007.02.035

Google Scholar

[46] G. Chen, C. Wu, W. Weng, D. Wu, W. Yan. Preparation of polystyrene/graphite nanosheet composites. Polymer, 44 (2003) 1781–1784.

DOI: 10.1016/s0032-3861(03)00050-8

Google Scholar

[47] G. Chen, W. Weng, D. Wu, C. Wu. Nonlinear conduction in nylon-6/foliated graphite nanocomposites above the percolation threshold. J. Polym. Sci. Part B Polym. Phys., 2 (2004) 155–167.

DOI: 10.1002/polb.10682

Google Scholar

[48] X.S. Du, M. Xiao, Y.Z. Meng. Facile synthesis of highly conductive polyaniline/graphite nanocomposites. Eur. Polym. J., 40 (2004) 1489–1893.

DOI: 10.1016/j.eurpolymj.2004.02.009

Google Scholar

[49] P. Xu, J. Loomis, R.D. Bradshaw, B. Panchapakesan, Load transfer and mechanical properties of chemically reduced graphene reinforcements in polymer composites. Nanotechnology, 23 (2012) 3847–3856.

DOI: 10.1088/0957-4484/23/50/505713

Google Scholar

[50] C. Garzón, H. Palza, Electrical behavior of polypropylene composites melt mixed with carbon-based particles: Effect of the kind of particle and annealing process. Compos. Sci. Technol. 99 (2014) 117–123.

DOI: 10.1016/j.compscitech.2014.05.018

Google Scholar

[51] Z. Hu, N. Li, J. Li, C. Zhang, Y. Song, X. Li, G. Wu, F. Xie, Y. Huang, Facile preparation of poly(p-phenylene benzobisoxazole)/graphene composite films via one-pot in situ polymerization. Polymer, 71 (2015) 8–14.

DOI: 10.1016/j.polymer.2015.06.047

Google Scholar

[52] Y. Liu, J. Huang, B. Yang, B.G. Sumpter, R. Qiao, Duality of the interfacial thermal conductance in graphene-based nanocomposites. Carbon, 75 (2014) 169–177.

DOI: 10.1016/j.carbon.2014.03.050

Google Scholar

[53] A. Yu P. Ramesh M.E. Itkis, B. Elena, R.C. Haddon, Graphite nanoplatelet-epoxy composite thermal interface materials. J. Phys. Chem. C, 111 (2007) 7565–7569.

DOI: 10.1021/jp071761s

Google Scholar

[54] S. Wang, M. Tambraparni, J. Qiu, J. Tipton, D. Dean. Thermal expansion of graphene composites. Macromolecules, 42 (2009) 5251–5255.

DOI: 10.1021/ma900631c

Google Scholar

[55] Z. Tu, J. Wang, C. Yu, H. Xiao, T. Jiang, D. Shi, Y.W. Mai, R.K.Y. Li, A facile approach for preparation of polystyrene/graphene nanocomposites with ultra-low percolation threshold through an electrostatic assembly process, Compos. Sci. Technol., 134 (2016) 49-56.

DOI: 10.1016/j.compscitech.2016.08.003

Google Scholar

[56] H. Baniasadi, S.A. Ahmad Ramazani, S. Mashayekhan, F. Ghaderinezhad, Preparation of conductive polyaniline/graphene nanocomposites viain situ emulsion polymerization and product characterization, Synth. Met., 196 (2014) 199–205.

DOI: 10.1016/j.synthmet.2014.08.007

Google Scholar

[57] J. Yan, T. Wei, Z. Fan, W. Qian, M. Zhang, X. Shen, et al. Preparation of graphene nanosheet/carbon nanotube/polyaniline composite as electrode material for supercapacitors. J. Power Sources, 195 (2010) 3041–3045.

DOI: 10.1016/j.jpowsour.2009.11.028

Google Scholar

[58] Y.G. Wang, H.Q. Li, Y.Y. Xia, Ordered whiskerlike polyaniline grown on the surface of mesoporous carbon and its electrochemical capacitance performance. Adv. Mater. 18 (2006) 2619–2623.

DOI: 10.1002/adma.200600445

Google Scholar

[59] T. Kuilla, S. Bhadra, D. Yao, N.H. Kim, S. Bose, J.H. Lee, Recent advances in graphene based polymer composites, Prog. Polym. Sci. 35 (2010) 1350–1375.

DOI: 10.1016/j.progpolymsci.2010.07.005

Google Scholar

[60] A. Li, C. Zhang Y.F. Zhang, Thermal conductivity of graphene-polymer composites: mechanisms, properties, and applications, Polymers, 9 (2017) 437.

DOI: 10.3390/polym9090437

Google Scholar

[61] M. Wang, X. Duan, Y. Xu, X. Duan, Functional three-dimensional graphene/polymer composites, ACS Nano, 10 (2016) 7231−7247.

DOI: 10.1021/acsnano.6b03349

Google Scholar