[1]
D.D. Chung, Review graphite. J. Mater. Sci., 37 (2002) 1475-1489.
Google Scholar
[2]
S. Yuan, Q. Tang, B. Hu, C. Ma, J. Duan, J., B. He, Efficient quasi-solid-state dye-sensitized solar cells from graphene incorporated conducting gel electrolytes. J. Mater. Chem. A, 2 (2014) 2814-2821.
DOI: 10.1039/c3ta14385f
Google Scholar
[3]
F.W. Low, C.W. Lai, Recent developments of graphene-TiO2 composite nanomaterials as efficient photoelectrodes in dye-sensitized solar cells: A review, Renew. Sustainable Energy Rev., 82 (2018) 103–125.
DOI: 10.1016/j.rser.2017.09.024
Google Scholar
[4]
F.W. Low, C.W. Lai, S.B. Abd Hamid, Surface modification of reduced graphene oxide film by Ti ion implantation technique for high dye-sensitized solar cells performance, Ceram. Int., 43 (2017) 625-633, (2017).
DOI: 10.1016/j.ceramint.2016.09.205
Google Scholar
[5]
C.W. Lai, F.W. Low, S.W. Chong, C.P.P Wong, S.Z. Mohamed Siddick, J.C. Juan, S.B. Abdul Hamid, An Overview: recent development of titanium dioxide loaded graphene nanocomposite film for solar application, Curr. Org. Chem., 19 (2015) 1882-1895.
DOI: 10.2174/1385272819666150605230240
Google Scholar
[6]
Z. Liu, K. Suenaga, P.J. Harris, S. Iijima, Open and closed edges of graphene layers. Phys. Rev. Lett., 102 (2009) 015501.
DOI: 10.1103/physrevlett.102.015501
Google Scholar
[7]
J.L. Dos Santos, N. Peres, A.C. Neto, Graphene bilayer with a twist: electronic structure. Phys. Rev. Lett., 99 (2007) 256802.
DOI: 10.1103/physrevlett.99.256802
Google Scholar
[8]
J.H. Warner, F. Schaffel, M. Rummeli, A. Bachmatiuk, Graphene: fundamentals and emergent applications: Newnes., UK, (2013).
Google Scholar
[9]
E. McCann, M. Koshino, The electronic properties of bilayer graphene. Rep. Prog. Phys., 76 (2013) 056503.
DOI: 10.1088/0034-4885/76/5/056503
Google Scholar
[10]
A.C. Neto, F. Guinea, N.M. Peres, K.S. Novoselov, A.K. Geim, The electronic properties of graphene. Rev. Mod. Phys., 81 (2009) 109.
DOI: 10.1103/revmodphys.81.109
Google Scholar
[11]
A. Rozhkov, A. Sboychakov, A. Rakhmanov, F. Nori, Electronic properties of graphene-based bilayer systems. Phys. Rep., 648 (2016) 1-104.
DOI: 10.1016/j.physrep.2016.07.003
Google Scholar
[12]
P. Zhu, A.S. Nair, P. Shengjie, Y. Shengyuan, S. Ramakrishna, Facile fabrication of TiO2–graphene composite with enhanced photovoltaic and photocatalytic properties by electrospinning. ACS Appl. Mater. Interfaces, 4 (2012) 581-585.
DOI: 10.1021/am201448p
Google Scholar
[13]
G. Fugallo, A. Cepellotti, L. Paulatto, M. Lazzeri, N. Marzari, F. Mauri, Thermal conductivity of graphene and graphite: collective excitations and mean free paths. Nano Lett., 14 (2014) 6109-6114.
DOI: 10.1021/nl502059f
Google Scholar
[14]
X. Guo, G. Lu, J. Chen, Graphene-based materials for photoanodes in dye-sensitized solar cells. Front. Energy Res., 3 (2015) 50.
DOI: 10.3389/fenrg.2015.00050
Google Scholar
[15]
E. Pop, V. Varshney, A.K. Roy, Thermal properties of graphene: Fundamentals and applications. MRS Bull., 37 (2012) 1273-1281.
DOI: 10.1557/mrs.2012.203
Google Scholar
[16]
A. Aghigh, V. Alizadeh, H. Wong, M.S. Islam, N. Amin, M. Zaman, Recent advances in utilization of graphene for filtration and desalination of water: A review. Desalination, 365 (2015) 389-397.
DOI: 10.1016/j.desal.2015.03.024
Google Scholar
[17]
J.D. Roy-Mayhew, I.A. Aksay, Graphene materials and their use in dye-sensitized solar cells. Chem. Rev., 114 (2014) 6323-6348.
DOI: 10.1021/cr400412a
Google Scholar
[18]
F. Bonaccorso, Z. Sun, T. Hasan, A. Ferrari, Graphene photonics and optoelectronics. Nat. Photonics, 4 (2010) 611-622.
DOI: 10.1038/nphoton.2010.186
Google Scholar
[19]
Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk, J.R. Potts, R.S. Ruoff, Graphene and graphene oxide: synthesis, properties, and applications. Adv. Mater., 22 (2010) 3906-3924.
DOI: 10.1002/adma.201001068
Google Scholar
[20]
A.L. Moore, L. Shi, Emerging challenges and materials for thermal management of electronics. Mater. Today, 17 (2014) 163–174.
Google Scholar
[21]
H. Chen, V.V. Ginzburg, J. Yang, Y. Yang, W. Liu, Y. Huang, L. Du, B. Chen, Thermal conductivity of polymer-based composites: fundamentals and applications. Prog. Polym. Sci. 59 (2016) 41–85.
DOI: 10.1016/j.progpolymsci.2016.03.001
Google Scholar
[22]
X. Huang, P. Jiang, T. Tanaka, A review of dielectric polymer composites with high thermal conductivity. IEEE Electr. Insul. Mag. 27 (2011) 8–16.
DOI: 10.1109/mei.2011.5954064
Google Scholar
[23]
Z. Han, A. Fina, Thermal conductivity of carbon nanotubes and their polymer nanocomposites: A review. Prog. Polym. Sci. 36 (2011) 914–944.
DOI: 10.1016/j.progpolymsci.2010.11.004
Google Scholar
[24]
S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Graphene-based composite materials. Nature, 442 (2006) 282–286.
DOI: 10.1038/nature04969
Google Scholar
[25]
S. Ansari E.P. Giannelis, Functionalized graphene sheetpoly (vinylidene fluoride) conductive nanocomposites. J. Polym. Sci. Part. B. Polym. Phys., 47 (2009) 888–897.
DOI: 10.1002/polb.21695
Google Scholar
[26]
T. Ramanathan, A.A. Abdala, S. Stankovich, D.A. Dikin, M.H. Alonso, R.D. Piner, et al. Functionalized graphene sheets for polymer nanocomposites. Nat. Nanotechnol., 3 (2008) 327–331.
DOI: 10.1038/nnano.2008.96
Google Scholar
[27]
Y.R. Lee, A.V. Raghu, H.M. Jeong, B.K. Kim, Properties of waterborne polyurethane/functionalized graphene sheet nanocomposites prepared by an in situ method. Macromol. Chem. Phys., 210 (2009) 1247–1254.
DOI: 10.1002/macp.200900157
Google Scholar
[28]
Y. Xu, Y. Wang, L. Jiajie, Y. Huang, Y. Ma, X. Wan, et al. A hybrid material of graphene and poly(3,4-ethyldioxythiophene) with high conductivity, flexibility, and transparency. Nano. Res. 2 (2009) 343–348.
DOI: 10.1007/s12274-009-9032-9
Google Scholar
[29]
H. Quan, B. Zhang, Q. Zhao, R.K.K. Yuen, R.K.Y. Li, Facile preparation and thermal degradation studies of graphite nanoplatelets (GNPs) filled thermoplastic polyurethane (TPU) nanocomposites. Compos. Part A, 40 (2009) 1506–1513.
DOI: 10.1016/j.compositesa.2009.06.012
Google Scholar
[30]
G. Eda, M. Chhowalla, Graphene-based composite thin films for electronics. Nano Lett. 9 (2009) 814–818.
DOI: 10.1021/nl8035367
Google Scholar
[31]
J. Liang, Y. Xu, Y. Huang, L. Zhang, Y. Wang, Y. Ma, et al. Infrared triggered actuators from graphene-based nanocomposites. J. Phys. Chem., 113 (2009) 9921–9927.
DOI: 10.1021/jp901284d
Google Scholar
[32]
H. Kim, C.W. Macosko, Processing–property relationships of polycarbonate/graphene nanocomposites. Polymer, 50 (2009) 3797–3809.
DOI: 10.1016/j.polymer.2009.05.038
Google Scholar
[33]
L. Vickery, A.J. Patil, S. Mann, Fabrication of graphene-polymer nanocomposites with higher-order three-dimensional architectures. Adv. Mater., 21 (2009) 2180–2184.
DOI: 10.1002/adma.200803606
Google Scholar
[34]
A. Yasmin, J.J. Luo, I.M. Daniel, Processing of expanded graphite reinforced polymer nanocomposites. Compos. Sci. Technol., 66 (2006) 1182–1189.
DOI: 10.1016/j.compscitech.2005.10.014
Google Scholar
[35]
J.K. Park, I.H. Dob, P. Askeland, L.T. Drzal, Electrodeposition of exfoliated graphite nanoplatelets onto carbon fibers and properties of their epoxy composites. Compos. Sci. Technol.,68 (2008) 1734–1741.
DOI: 10.1016/j.compscitech.2008.02.002
Google Scholar
[36]
J. Li, M.L. Sham, J.K. Kim, G. Marom, Morphology and properties of UV/ozone treated graphite nanoplatelet/epoxy nanocomposites. Comp. Sci. Technol., 67 (2007) 296–305.
DOI: 10.1016/j.compscitech.2006.08.009
Google Scholar
[37]
N. Jovic, D. Dudic, A. Montone, M.V. Antisari, M. Mitric, V. Djokovic. Temperature dependence of the electrical conductivity of epoxy/expanded graphite nanosheet composites. Scripta Mater., 58 (2008) 846–849.
DOI: 10.1016/j.scriptamat.2007.12.041
Google Scholar
[38]
J. Li, L. Vaisman, G. Marom J.K. Kim, Br treated graphite nanoplatelets for improved electrical conductivity of polymer composites. Carbon, 45 (2007) 744–750.
DOI: 10.1016/j.carbon.2006.11.031
Google Scholar
[39]
A. Yu, P. Ramesh, X. Sun, E. Bekyarova, M.E. Itkis, R.C. Haddon. Enhanced thermal conductivity in a hybrid graphite nanoplatelet-carbon nanotube filler for epoxy composites. Adv. Mater., 20 (2008) 4740–4744.
DOI: 10.1002/adma.200800401
Google Scholar
[40]
S. Ganguli, A.K. Roy, D.P. Anderson. Improved thermal conductivity for chemically functionalized exfoliated graphite/epoxy composites. Carbon, 46 (2008) 806–817.
DOI: 10.1016/j.carbon.2008.02.008
Google Scholar
[41]
W. Zheng, X. Lu, S.C. Wong, Electrical and mechanical properties of expanded graphite-reinforced high-density polyethylene. J. Appl. Polym. Sci., 91 (2004) 2781–2788.
DOI: 10.1002/app.13460
Google Scholar
[42]
J.F. Zou, Z.Z. Yu, Y.X. Pan, X.P. Fang, Y.C. Ou. Conductive mechanism of polymer/graphite conducting composites with low percolation threshold. J. Polym. Sci. Part B Polym. Phys., 40 (2002) 954–963.
DOI: 10.1002/polb.10141
Google Scholar
[43]
W.P. Wanga, C.Y. Pana. Preparation and characterization of polystyrene/graphite composite prepared by cationic grafting polymerization. Polymer, 45 (2004) 3987–3995.
DOI: 10.1016/j.polymer.2004.04.023
Google Scholar
[44]
M. Xiao, L. Sun, J. Liu, Y. Li, K. Gong, Synthesis and properties of polystyrene/graphite nanocomposites. Polymer, 43 (2002) 2245–2248.
DOI: 10.1016/s0032-3861(02)00022-8
Google Scholar
[45]
H. Kim, H.T. Hahn, L.M. Viculis, S. Gilje, B..B. Kaner. Electrical conductivity of graphite/polystyrene composites made from potassium intercalated graphite. Carbon, 45 (2007) 1578–1582.
DOI: 10.1016/j.carbon.2007.02.035
Google Scholar
[46]
G. Chen, C. Wu, W. Weng, D. Wu, W. Yan. Preparation of polystyrene/graphite nanosheet composites. Polymer, 44 (2003) 1781–1784.
DOI: 10.1016/s0032-3861(03)00050-8
Google Scholar
[47]
G. Chen, W. Weng, D. Wu, C. Wu. Nonlinear conduction in nylon-6/foliated graphite nanocomposites above the percolation threshold. J. Polym. Sci. Part B Polym. Phys., 2 (2004) 155–167.
DOI: 10.1002/polb.10682
Google Scholar
[48]
X.S. Du, M. Xiao, Y.Z. Meng. Facile synthesis of highly conductive polyaniline/graphite nanocomposites. Eur. Polym. J., 40 (2004) 1489–1893.
DOI: 10.1016/j.eurpolymj.2004.02.009
Google Scholar
[49]
P. Xu, J. Loomis, R.D. Bradshaw, B. Panchapakesan, Load transfer and mechanical properties of chemically reduced graphene reinforcements in polymer composites. Nanotechnology, 23 (2012) 3847–3856.
DOI: 10.1088/0957-4484/23/50/505713
Google Scholar
[50]
C. Garzón, H. Palza, Electrical behavior of polypropylene composites melt mixed with carbon-based particles: Effect of the kind of particle and annealing process. Compos. Sci. Technol. 99 (2014) 117–123.
DOI: 10.1016/j.compscitech.2014.05.018
Google Scholar
[51]
Z. Hu, N. Li, J. Li, C. Zhang, Y. Song, X. Li, G. Wu, F. Xie, Y. Huang, Facile preparation of poly(p-phenylene benzobisoxazole)/graphene composite films via one-pot in situ polymerization. Polymer, 71 (2015) 8–14.
DOI: 10.1016/j.polymer.2015.06.047
Google Scholar
[52]
Y. Liu, J. Huang, B. Yang, B.G. Sumpter, R. Qiao, Duality of the interfacial thermal conductance in graphene-based nanocomposites. Carbon, 75 (2014) 169–177.
DOI: 10.1016/j.carbon.2014.03.050
Google Scholar
[53]
A. Yu P. Ramesh M.E. Itkis, B. Elena, R.C. Haddon, Graphite nanoplatelet-epoxy composite thermal interface materials. J. Phys. Chem. C, 111 (2007) 7565–7569.
DOI: 10.1021/jp071761s
Google Scholar
[54]
S. Wang, M. Tambraparni, J. Qiu, J. Tipton, D. Dean. Thermal expansion of graphene composites. Macromolecules, 42 (2009) 5251–5255.
DOI: 10.1021/ma900631c
Google Scholar
[55]
Z. Tu, J. Wang, C. Yu, H. Xiao, T. Jiang, D. Shi, Y.W. Mai, R.K.Y. Li, A facile approach for preparation of polystyrene/graphene nanocomposites with ultra-low percolation threshold through an electrostatic assembly process, Compos. Sci. Technol., 134 (2016) 49-56.
DOI: 10.1016/j.compscitech.2016.08.003
Google Scholar
[56]
H. Baniasadi, S.A. Ahmad Ramazani, S. Mashayekhan, F. Ghaderinezhad, Preparation of conductive polyaniline/graphene nanocomposites viain situ emulsion polymerization and product characterization, Synth. Met., 196 (2014) 199–205.
DOI: 10.1016/j.synthmet.2014.08.007
Google Scholar
[57]
J. Yan, T. Wei, Z. Fan, W. Qian, M. Zhang, X. Shen, et al. Preparation of graphene nanosheet/carbon nanotube/polyaniline composite as electrode material for supercapacitors. J. Power Sources, 195 (2010) 3041–3045.
DOI: 10.1016/j.jpowsour.2009.11.028
Google Scholar
[58]
Y.G. Wang, H.Q. Li, Y.Y. Xia, Ordered whiskerlike polyaniline grown on the surface of mesoporous carbon and its electrochemical capacitance performance. Adv. Mater. 18 (2006) 2619–2623.
DOI: 10.1002/adma.200600445
Google Scholar
[59]
T. Kuilla, S. Bhadra, D. Yao, N.H. Kim, S. Bose, J.H. Lee, Recent advances in graphene based polymer composites, Prog. Polym. Sci. 35 (2010) 1350–1375.
DOI: 10.1016/j.progpolymsci.2010.07.005
Google Scholar
[60]
A. Li, C. Zhang Y.F. Zhang, Thermal conductivity of graphene-polymer composites: mechanisms, properties, and applications, Polymers, 9 (2017) 437.
DOI: 10.3390/polym9090437
Google Scholar
[61]
M. Wang, X. Duan, Y. Xu, X. Duan, Functional three-dimensional graphene/polymer composites, ACS Nano, 10 (2016) 7231−7247.
DOI: 10.1021/acsnano.6b03349
Google Scholar