Effect of Fiber Orientation and Modification on the Behavior of Bamboo Fiber Reinforced UPE/ESOA Hybrid Composite

Article Preview

Abstract:

In this chapter, bamboo fiber with parallel and anti parallel orientation has been introduced in the Unsaturated polyester (UPE)/ Epoxidized Soybean Oil Acrylate (ESOA) blend. The reinforced fiber mats were treated with NaOH and NaOH-silane to improve the stiffness and strength of the composites. Parallelly oriented fiber reinforced composite showed improved glass transition temperature. The mechanical, thermal, storage modulus and tribological properties are highly improved for parallel fiber oriented composite. Also alkali-silane treated fiber reinforced composite show optimum properties than alkali treated and raw fiber based composites. Anti parallelly oriented composites show reduced performance due to pull out of fibers. The FTIR analysis of all the composites was observed for the first time with valid reaction mechanism. So this new partially biodegradable composite can open a new door for potential application in various fields. This composite may be used as an alternating material to wood for various indoor and outdoor applications.

You might also be interested in these eBooks

Info:

Periodical:

Diffusion Foundations (Volume 23)

Pages:

40-56

Citation:

Online since:

August 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L.Osorio, E. Trujillo, A.W. Van Vuure, I. Verpoest, Morphological aspects and mechanical properties of single bamboo fibers and flexural characterization of bamboo/ epoxy composites, J. Reinf. Plast. Compos. 30 (2011) 396-408.

DOI: 10.1177/0731684410397683

Google Scholar

[2] S.H. Lee, S. Wang, Biodegradable polymers/bamboo fiber biocomposites with bio-based coupling agent, Composites Part A. 37 ( 2006) 80-91.

DOI: 10.1016/j.compositesa.2005.04.015

Google Scholar

[3] S. Kumar, V. Choudhary, R. J. Kumar, Study of the compatibility of unbleached and bleached bamboo-fiber with LLDPE matrix , J. Therm. Anal. Calorim. 102 (2010) 751-761.

DOI: 10.1007/s10973-010-0799-4

Google Scholar

[4] K. Okubo, T. Fujii, Y. Yamamoto, Development of bamboo-based polymer composites and their mechanical properties, Composites Part A. 35 (2004) 377-383.

DOI: 10.1016/j.compositesa.2003.09.017

Google Scholar

[5] K. Hyojin, O.Kazuya, F.Toru , T. Kenichi , Influence of fiber extraction and surface modification on mechanical properties of green composites with bamboo fiber , J. Adhes. Sci. Technol. 27 (2013) 1348-1358.

DOI: 10.1080/01694243.2012.697363

Google Scholar

[6] N.R. Paluvai, S. Mohanty, S.K. Nayak, Unsaturated polyester-toughened epoxy composites: Effect of sisal fiber on thermal and dynamic mechanical properties, J.vnnyl. addit. technol. 23 (2017) 188-199.

DOI: 10.1002/vnl.21491

Google Scholar

[7] L. Xue, L. G. Tabil, P. Satyanarayan, Chemical Treatments of Natural Fiber for Use in Natural Fiber-Reinforced Composites: A Review, J. Polym. Environ. 15 (2007) 25-33.

DOI: 10.1007/s10924-006-0042-3

Google Scholar

[8] P.A. Sreekumar, P.T. Selvin, M.S. Jean, J. Kuruvilla, G. Unnikrishnan, T. Sabu, Effect of fiber surface modification on the mechanical and water absorption characteristics of sisal/polyester composites fabricated by resin transfer molding , Composites Part A. 40 (2009) 1777-1784.

DOI: 10.1016/j.compositesa.2009.08.013

Google Scholar

[9] A.K Mohanty, M.A Khan, G Hinrichsen, Influence of Chemical Surface Modification on the Properties of Biodegradable Jute Fabrics–Polyester Amide Composites, Compos. Part A. 31 (2000) 143-150.

DOI: 10.1016/s1359-835x(99)00057-3

Google Scholar

[10] O.M.L. Asumani, R.G. Reid , R. Paskaramoorthy, The effects of alkali–silane treatment on the tensile and flexural properties of short fibre non-woven kenaf reinforced polypropylene composites, Compos.Part A. 43 (2012) 1431-1440.

DOI: 10.1016/j.compositesa.2012.04.007

Google Scholar

[11] N. Chand, U.K. Dwivedi, Sliding wear and friction characteristics of sisal fibre reinforced polyester composites: Effect of silane coupling agent and applied load, Polym. Compos. 29 (2008) 280-284.

DOI: 10.1002/pc.20368

Google Scholar

[12] S. Grishchuk, K.J. Karger, Hybrid thermosets from vinyl ester resin and acrylated epoxidized soybean oil (AESO), EXPRESS Polym Lett. 5 (2011) 2-11.

DOI: 10.3144/expresspolymlett.2011.2

Google Scholar

[13] S.K. Panda, P. Mohanty, D. Behera, T.K. Bastia, ESOA modified unsaturated polyester hybrid networks: A new perspective, J. Appl. Polym. Sci.133 (2016).

DOI: 10.1002/app.44345

Google Scholar

[14] R. A. Aguilar, P.J. Herrera-Franco, A.J. de Martinez-Gomez, Improving the bonding between henequen fibers and high density polyethylene using atmospheric pressure ethylene-plasma treatments, EXPRESS Polym Lett. 8 (2014) 491-504.

DOI: 10.3144/expresspolymlett.2014.53

Google Scholar

[15] A.K. Mohanty, M.A. Khan, G. Hinrichsen, Influence of Chemical Surface Modification on the Properties of Biodegradable Jute Fabrics–Polyester Amide Composites, Composites Part A. 31 (2000) 143-150.

DOI: 10.1016/s1359-835x(99)00057-3

Google Scholar

[16] L.A. Pothan, S. Thomas, N.R. Neelakantan, Short Banana Fibre Reinforced Polyester Composites: Mechanical, Failure and Aging Characteristics, J. Reinf. Plast. Compos.16 (1997)744-765.

DOI: 10.1177/073168449701600806

Google Scholar

[17] S. Qian, H. Mao, K. Sheng, J. Lu, Y. Luo , C. Hou, Effect of low-concentration alkali solution pretreatment on the properties of bamboo particles reinforced poly(lactic acid) composites ,J. Appl.Polym. Sci. 130 (2013) 1667-1674.

DOI: 10.1002/app.39328

Google Scholar

[18] S.V. Prasad, C. Pavithran, P.K. Rohatgi, Alkali treatment of coir fibers for coir-polyester composites, J. Mater. Sci. 18 (1983) 1443-1454.

DOI: 10.1007/bf01111964

Google Scholar

[19] A. Valadez-Gonzalez, J.M. Cervantes-Uc, R. Olayo, P.J. Herrera-Franco, Chemical modification of henequen fibers with an organosilane coupling agent, Composites Part B. 30 (1999) 321-331.

DOI: 10.1016/s1359-8368(98)00055-9

Google Scholar

[20] A.K. Bledzki, S. Reihmane , J. Gassan, Properties and modification methods for vegetable fibers for natural fiber composites, J. Appl. Polym. Sci. 59 (1996) 1329-1336.

DOI: 10.1002/(sici)1097-4628(19960222)59:8<1329::aid-app17>3.0.co;2-0

Google Scholar

[21] W. Yueping , W. Ge, C. Haitao, T. Genlin, L. Zheng, X.Q. Feng, Z. Xiangqi, H. Xiaojun, G. Xushan, Structures of Bamboo Fiber for Textiles , Text. Res. J. 80 (2010) 334-343.

DOI: 10.1177/0040517509337633

Google Scholar

[22] T. Lu, M. Jiang, Z. Jiang, D. Hui, Z. Wang , Z. Zhou , Effect of surface modification of bamboo cellulose fibers on mechanical properties of cellulose/epoxy composite, Composites Part B. 51 (2013) 28-34.

DOI: 10.1016/j.compositesb.2013.02.031

Google Scholar

[23] Y. Luo, Y. Zhao, Y. Duan, S. Du, Surface and Wettability Property Analysis of CCF300 Carbon Fibers with Different Sizing or Without Sizing, Mater. Des. 32 (2011) 941-946.

DOI: 10.1016/j.matdes.2010.08.004

Google Scholar

[24] P. Chen, C. Lu, Q. Yu, Y. Gao, J. Li, X. Li, Influence of Fiber Wettability on the Interfacial Adhesion of Continuous Fiber-Reinforced PPESK Composites, J. Appl. Polym. Sci. 102 (2016) 2544-2551.

DOI: 10.1002/app.24681

Google Scholar

[25] Z. Rasheva, G. Zhang, T. Burkhart, A Correlation between the Tribological and Mechanical Properties of Short Carbon Fibers Reinforced PEEK Materials with Different Fiber Orientations, Tribol. Int. 43 (2010) 1430-1437.

DOI: 10.1016/j.triboint.2010.01.020

Google Scholar

[26] M.A. Khan, M.M. Hassan, L.T. Drzal, Effect of 2-HydroxyethyL Methacrylate (HEMA) on the Mechanical and Thermal Properties of Jute– Polycarbonate Composite, Composites Part A. 36 (2005) 71-81.

DOI: 10.1016/s1359-835x(04)00178-2

Google Scholar

[27] D.Bertomeu, D .G. Sanoguera, O.Fenollar, T. Boronat , R.Balart , Use of eco-friendly epoxy resins from renewable resources as potential substitutes of petrochemical epoxy resins for ambient cured composites with flax reinforcements , Polym. Compos. 33 (2012) 683-692.

DOI: 10.1002/pc.22192

Google Scholar

[28] K.Adekunle, D. Akesson , M. Skrifvars, Biobased composites prepared by compression molding with a novel thermoset resin from soybean oil and a natural‐fiber reinforcement, J. Appl. Polym.Sci. 116 (2010) 1759-1765.

DOI: 10.1002/app.31634

Google Scholar

[29] J .George, S.S. Bhagawan , S. Thomas, Thermo gravimetric and dynamic mechanical thermal analysis of pineapple fiber reinforced polyethylene composites, J. Therm. Anal. 47(1996) 1121-1140.

DOI: 10.1007/bf01979452

Google Scholar

[30] B.F. Yousif, N.S.M. Tayeb, Adhesive wear performance of T-OPRP and UT-OPRP composites, Tribol Lett. 32 (2008) 199-208.

DOI: 10.1007/s11249-008-9381-7

Google Scholar

[31] O. Shinji, Mechanical properties of kenaf fibers and kenaf/PLA composites, Mech. Mater. 40 (2008) 446-452.

DOI: 10.1016/j.mechmat.2007.10.006

Google Scholar

[32] U. Nirmal, B.F. Yousif, D. Rilling, P.V. Brevern, Effect of betel nut fibres treatment and contact conditions on adhesive wear and frictional performance of polyester composites, Wear. 268 (2010) 1354-1370.

DOI: 10.1016/j.wear.2010.02.004

Google Scholar

[33] B.F. Yousif, U. Nirmal, K.J. Wong, Three-body abrasion on wear and frictional performance of treated betel nut fibre reinforced epoxy (T-BFRE) composite, Mater. Des. 31 (2010) 4514-4521.

DOI: 10.1016/j.matdes.2010.04.008

Google Scholar

[34] J. Tong, R.D. Arnell, L.Q. Ren, Dry sliding wear behavior of bamboo, Wear. 221 (1998) 37-46.

DOI: 10.1016/s0043-1648(98)00261-0

Google Scholar

[35] B.F. Yousif, D. Alvin, T.F. Yusaf, Adhesive wear and frictional behavior of multilayered polyester composite based on betel nut fiber mats under wet contact condition, Surf. Rev. Lett. 16 (2009) 407-414.

DOI: 10.1142/s0218625x09012792

Google Scholar

[36] C.W. Chin and B.F. Yousif, Potential of kenaf fibers as reinforcement for Tribological applications, Wear. 267 (2009) 1550-1557.

DOI: 10.1016/j.wear.2009.06.002

Google Scholar