Polymer Electrolyte Membranes

Article Preview

Abstract:

Polymer electrolyte membranes (PEM) with good properties are essential for the improvement of electrochemical operations. The increase in properties of polymer electrolyte membranes will develop the performance of polymer electrolyte membranes in the fuel cells. The importance of polymer electrolyte membranes is increasing recently due to its activity and simplicity in energy associated applications like automobiles and various portable applications. PEM has various properties like proton conductivity, chemical stability, mechanical properties, thermal stability and so on. These properties are enhanced and influenced by various factors like morphology, the molecular weight of the membranes, chemical structures, cross linkages etc. The present chapter attempts to summarize about the properties of polymer electrolyte membrane involved in the different types of electrochemical utilizations. Keywords: Polymer electrolyte membrane, fuel cells, morphology, proton conductivity, chemical structure.

You might also be interested in these eBooks

Info:

Periodical:

Diffusion Foundations (Volume 23)

Pages:

82-89

Citation:

Online since:

August 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L.O. Vasquez, Fuel Cell Research Trends, Nova Science Publishers, Inc., New York, (2007).

Google Scholar

[2] N. Angulakshmi, S. Thomas, K. S. Nahm, A. M. Stephan, R.N. Elizabeth, Electrochemical and mechanical properties of nanochitin-incorporated PVDF-HFP-based polymer electrolytes for lithium batteries, Ionics. 17 (2011) 407–414.

DOI: 10.1007/s11581-010-0517-z

Google Scholar

[3] P.N. Pintauro, Perspectives on Membranes and Separators for Electrochemical Energy Conversion and Storage Devices, Polym. Rev. 55 (2015) 201-207.

DOI: 10.1080/15583724.2015.1031378

Google Scholar

[4] D.T. Hallinan, N. P. Balsara, Polymer electrolytes, Annu. Rev. Mater. Res. 43 (2013) 503–525.

DOI: 10.1146/annurev-matsci-071312-121705

Google Scholar

[5] N. Sykam, R.K. Gautam, K.K. Kar, Electrical, mechanical, and thermal properties of exfoliated graphite/phenolic resin composite bipolar plate for polymer electrolyte membrane fuel cell, Polym. Eng. Sci. 55 (2015) 917–923.

DOI: 10.1002/pen.23959

Google Scholar

[6] S. Lee, K. Yoon, M. Song, H. Peng, K. A. Page, C. L. Soles, D. Y. Yoon, Structure and Properties of Polymer Electrolyte Membranes Containing Phosphonic Acids for Anhydrous Fuel Cells, Chem. Mater. 24 (2012) 115−122.

DOI: 10.1021/cm202064x

Google Scholar

[7] M. H. D. Othman, A. F. Ismail, A. Mustafa, Recent Development of Polymer Electrolyte Membranes for Direct Methanol Fuel Cell Application – A Review, Malaysian Polymer Journal. 5 (2010)1-36.

Google Scholar

[8] H. Zhang, P. K. Shen, Recent Development of Polymer Electrolyte Membranes for Fuel Cells, Chem. Rev.112(2012) 2780−2832.

DOI: 10.1021/cr200035s

Google Scholar

[9] J. Hou, H.Yu, L.Wang, D. Xing, Z. Hou, P. Ming, Z. Shao, B. Yi, Conductivity of aromatic-based proton exchange membranes at subzero temperatures, J. Power Sources. 180 (2008) 232–237.

DOI: 10.1016/j.jpowsour.2008.01.052

Google Scholar

[10] S. U. Çelik, A. Bozkurt, S. S. Hosseini, Alternatives toward proton conductive anhydrous membranes for fuel cells: Heterocyclic protogenic solvents comprising polymer electrolytes. Prog. Polym. Sci. 37 (2012) 1265–1291.

DOI: 10.1016/j.progpolymsci.2011.11.006

Google Scholar

[11] U. Sen, A. Bozkurt, A. Ata, Nafion/poly(1-vinyl-1,2,4-triazole) blends as proton conducting membranes for polymer electrolyte membrane fuel cells. J. Power Sources 195 (2010) 7720–7726.

DOI: 10.1016/j.jpowsour.2010.04.087

Google Scholar

[12] E. Montoneri, V. Boffa, S. Bottigliengo, M. Casciola, M. Sganappa, A. Marigo, G. Speranza, L. Minati, S. Torrengo, G. Alberti, L. Bertinetti, A new polyfunctional acid material for solid state proton conductivity in dry environment: Nafion doped with difluoromethandiphosphonic acid. Solid State Ionics 181 (13–14) (2010) 578–585.

DOI: 10.1016/j.ssi.2010.03.001

Google Scholar

[13] N. W. DeLuca, Y. A. Elabd, Polymer electrolyte membranes for the direct methanol fuel cell: A review, J. Polym. Sci. Part B Polym. Phys. 44 (2006) 2201–2225.

DOI: 10.1002/polb.20861

Google Scholar

[14] J. Tang, W. Yuan, J. Wang, J. Tang, H. Li, Y. Zhang, Perfluorosulfonate ionomer membranes with improved through-plane proton conductivity fabricated under magnetic field, J. Membr. Sci. 423–424 (2012) 267–274.

DOI: 10.1016/j.memsci.2012.08.023

Google Scholar

[15] G. G. Kumar, Irradiated PVdF-HFP-montmorillonite composite membranes for the application of direct ethanol fuel cells, J. Mater. Chem., 21 (2011) 17382–17391.

DOI: 10.1039/c1jm11528f

Google Scholar

[16] G. Merle, S.S. Hosseiny, M. Wessling, K. Nijmeijer, New cross-linked PVA based polymer electrolyte membranes for alkaline fuel cells, J. Membr. Sci., 409–410 (2012) 191–199.

DOI: 10.1016/j.memsci.2012.03.056

Google Scholar

[17] Y. Iwai, T. Yamanishi, Thermal stability of ion-exchange Nafion N117CS membranes. Polym. Degrad. Stab. 94 (2009) 679–687.

DOI: 10.1016/j.polymdegradstab.2008.12.020

Google Scholar

[18] L.H. Sperling, Introduction to Physical Polymer Science, fourth ed., Wiley-Interscience, Hoboken, NJ, (2006).

Google Scholar

[19] X. Fang, P. K. Shen, S. Song, V. Stergiopoulos, P. Tsiakaras, Degradation of perfluorinated sulfonic acid films: An in-situ infrared spectro-electrochemical study, Polym. Degrad. Stabil. 94 (2009) 1707–1713.

DOI: 10.1016/j.polymdegradstab.2009.06.015

Google Scholar

[20] H. T. Li, G. Zhang, W. J. Ma, C. J. Zhao, Y. Zhang, M. M. Han, J. Zhu, Z. G. Liu, J. Wu, H. Na, Composite membranes based on a novel benzimidazole grafted PEEK and SPEEK for fuel cells, Int. J. Hydrogen Energy 35 (2010) 11172–11179.

DOI: 10.1016/j.ijhydene.2010.07.091

Google Scholar

[21] J. Peron, A. Mani, X. Zhao, D. Edwards, M. Adachi, T. Soboleva, Z. Shi, Z. Xie, T. Navessin, S. Holdcroft, Properties of Nafion® NR-211 membranes for PEMFCs, J. Membr. Sci., 356 (2010) 44–51.

DOI: 10.1016/j.memsci.2010.03.025

Google Scholar

[22] S. Zhang, X.-Z. Yuan, J.N.C. Hin, H. Wang, J. Wu, K.A. Friedrich, M. Schulze, Effects of open-circuit operation on membrane and catalyst layer degradation in proton exchange membrane fuel cells, J. Power Sources, 195 (2010) 1142–1148.

DOI: 10.1016/j.jpowsour.2009.08.070

Google Scholar

[23] M. Rikukawa, K. Sanui, Proton-conducting polymer electrolyte membranes based on hydrocarbon polymers, Prog. Polym. Sci. 25 (2000) 1463-1502.

DOI: 10.1016/s0079-6700(00)00032-0

Google Scholar

[24] M. Yoshitake, A. Watakabe, Perfluorinated ionic polymers for PEFCs (including supported PFSA), in Fuel Cell Handbook-I, Ed. Scherer, G.G., Advances in Polymer Science, Springer-Verlag, Germany, 2008, p.127–155.

DOI: 10.1007/12_2008_154

Google Scholar