Ionic Transport in Sol-Gel Derived Organic-Inorganic Composites

Article Preview

Abstract:

This chapter is devoted to organic-inorganic composite ion exchange resins and membranes. We ascertain interrelation between composition, morphology and porous structure of the materials on the one hand and ion transport through them on the other hand. The composites for different practical application (fuel cells, ion exchange columns, electrodialysis) are in a focus of attention. Porosity of a polymer constituent of the composite was determined with a method of standard contact porosimetry, which gives information about pores in a very wide diapason (from 2 nm to 200 μm). In this context, pore formation in ion exchange polymers during swelling is considered. A number of parameters, which are obtained from porosimetric measurements, can be used for interpretation of ion transport regularities, particularly evolution of electrical conductivity. Embedded non-aggregated nanoparticles, their aggregates and agglomerates affect differently porosity of the polymer constituent: they are able to block, stretch and squeeze pores, As a result, the composites demonstrates different rate of ion transport depending on amount and size of the inorganic particles. The approach to purposeful formation of one or other types of particles has been proposed.

You might also be interested in these eBooks

Info:

Periodical:

Diffusion Foundations (Volume 23)

Pages:

104-137

Citation:

Online since:

August 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Eisenberg, H.L. Yeager, Perfluorinated ionomer membranes, ACS Symp. Ser. 180, American Chemical Society, Washington, (1982).

Google Scholar

[2] W.Y. Hsu, T.D. Gierke. Ion transport and clustering in nafion perfluorinated membranes, J. Memr. Sci. 13 (1983) 307-326.

DOI: 10.1016/s0376-7388(00)81563-x

Google Scholar

[3] P.J. Brookman, J.W. Nicholson, in: A.D. Wilson, H.J. Prosser (Eds.), Developments in Ionic Polymers, vol. 2, Elsevier Applied Science Publishers, London, 1986, p.269–283.

Google Scholar

[4] N.A. Kononenko, N.P. Berezina, Yu.M. Vol'fkovich, E.I. Shkol'nikov, I.A. Blinov, Investigation of ion-exchange materials structure by standard porosimetry method, Journal of Applied Chemistry of the USSR 58 (1985) 2029-2033.

Google Scholar

[5] N.P. Berezina, N.A. Kononenko, Yu.M. Vol'fkovich, Hydrophilic properties of heterogeneous ion-exchange membranes, Russ. J. Electrochem. 30 (1994) 329-335.

Google Scholar

[6] B. Bonnet, D. J. Jones, J. Rozière, L. Tchicaya, G. Alberti, M. Casciola, L. Massinelli, B. Bauer, A. Peraio, E. Ramunni, Hybrid organic-inorganic membranes for a medium temperature fuel cell, J. New Mat. Electrochem. Systems, 3 (2000) 87-92.

Google Scholar

[7] Ch. Guizard, A. Bac, M. Barboiu, N. Hovnanian, Hybrid organic-inorganic membranes with specific transport properties: Applications in separation and sensors technologies, Separ. Purif. Technol, 25 (2001) 167-180.

DOI: 10.1016/s1383-5866(01)00101-0

Google Scholar

[8] L. Cumbal, A.K. SenGupta, J. Greenleaf, D. Leun, Polymer-supported subcolloidal particles: characterization and environmental application, in: S. Barany (Ed.) Role of Interfaces in Environmental Protection, NATO Science Series, IV. Earth and Environmental Science. V. 24, Kluwer Academic Publishers, Dordrecht, Boston, London, 2003, pp.67-80.

DOI: 10.1007/978-94-010-0183-0_3

Google Scholar

[9] S.P. Nunes, Organic-inorganic membranes, Membr. Sci. Technol. 13 (2008) 121-134.

Google Scholar

[10] B.P. Tripathi, V.K. Shahi, Organic–inorganic nanocomposite polymer electrolyte membranes for fuel cell applications, Progress in Polymer Science 36 (2011) 945–979.

DOI: 10.1016/j.progpolymsci.2010.12.005

Google Scholar

[11] S. Sarkar, P. Prakash, A.K. SenGupta, Polymeric-inorganic hybrid ion-exchangers. Preparation, characterization and environmental application, in: A. K. SenGupta (Ed.), Ion Exchange and Solvent Extraction: A Series of Advances, V. 20, CRC Press, Boca Raton, 2011, pp.293-342.

DOI: 10.1201/b10813-11

Google Scholar

[12] A. Kraytsberg, Y. Eiu-Eli, Review of advanced materials for proton exchange membrane fuel cells, ACS Publ., Energy Fuels 28 (2014) 7303–7330.

DOI: 10.1021/ef501977k

Google Scholar

[13] N.A. Kononenko, M.A. Fomenko, Y.M. Volfkovich, Structure of perfluorinated membranes investigated by method of standard contact porosimetry, Adv. Colloid. Interface Sci. 222 (2015) 425-435.

DOI: 10.1016/j.cis.2014.07.009

Google Scholar

[14] A. Eisenberg, Clustering of ions in organic polymers. A theoretical approach, // Macromolecules. 3 (1970) 147–154.

DOI: 10.1021/ma60014a006

Google Scholar

[15] R.A, Weiss, W.Y. Macknight, R.D. Lundberg, Structure and application of ion0containing polymers, in: A. Eisenberg, F.E. Bailey (Eds.), Coulombic interactiion in macromolecular systems, ACS Symp. Ser. N 302, American Chemical Society, Washington, DC, 1986, pp.2-19.

Google Scholar

[16] Dreifus B. Clustering and hydration in ionomers, ibid, pp.103-119.

Google Scholar

[17] M. Fujimura, T. Hashimoto, H. Kawai, Small-angle X-ray scattering study of perfluorinated ionomer membranes. 1. Origin of two scattering maxima, Macromolecules. 14 (1981) 1309–1315.

DOI: 10.1021/ma50006a032

Google Scholar

[18] W.Y. Hsu, T.D. Gierke. Ion transport and clustering in nafion perfluorinated membranes, J. Memr. Sci. 13 (1983) 307-326.

DOI: 10.1016/s0376-7388(00)81563-x

Google Scholar

[19] P. J. James, J. A. Elliott, T. J. McMaster, J. M. Newton, A. M. S. Elliot, S. Hanna, M. J. Miles, Hydration of Nafion studied by AFM and X-ray scattering, J. Mater. Sci. 35 (2000) 5111 – 5119.

DOI: 10.1023/a:1004891917643

Google Scholar

[20] S.K. Young, S.F. Trevino, N.C. Beck Tan, Small-Angle Neutron Scattering Investigation of Structural Changes in Nafion Membranes Induced by Swelling with Various Solvents, J. Polym. Sci., Part B: Polym. Phys. 40 (2002) 387–400.

DOI: 10.1002/polb.10092

Google Scholar

[21] Yu.S. Dzyazko, L.N. Ponomareva, Y.M. Volfkovich, V.E. Sosenkin, V.N. Belyakov, Conducting properties of a gel ionite  modied with zirconium hydrophosphate nanoparticles, Russ. J. Electrochem., 49 (2013) 209–215.

DOI: 10.1134/s1023193513030075

Google Scholar

[22] J. Dobrevsky, A. Zvezdov, Investigation of pore structure of ion exchange membranes, Desalinatiion 28 (1979) 283-289.

DOI: 10.1016/s0011-9164(00)82235-3

Google Scholar

[23] K.A. Kun, R. Kunin, The pore structure of macroreticular ion exchange resins, J. Polym. Sci.: Polym. Symp. 16 (1967) 1457-1469.

DOI: 10.1002/polc.5070160323

Google Scholar

[24] N. Kononenko, V. Nikonenko, D. Grande, C. Larchet, L. Dammak, M. Fomenko, Yu. Volfkovich, Porous structure of ion exchange membranes investigated by various technique, Adv. Colloid. Interface Sci., 246 (2017) 196-216.

DOI: 10.1016/j.cis.2017.05.007

Google Scholar

[25] K. Jia, B. Pan, L. Lv, Q. Zhang, X. Wang, B. Pan, W. Zhang, Impregnating titanium phosphate nanoparticles onto a porous cation exchanger for enhanced lead removal from waters. J. Colloid Interface Sci. 331 (2009) 453-457.

DOI: 10.1016/j.jcis.2008.11.068

Google Scholar

[26] Q.R. Zhang, W. Du, B.C. Pan, B.J. Pan, W.M. Zhan, Q.J. Zhan, Z.W. Xu, Q.X. Zhang, A comparative study on Pb2+, Zn2+ and Cd2+ sorption onto zirconium phosphate supported by a cation exchanger, J. Hazardous Mater. 152 (2008), 469-475.

DOI: 10.1016/j.jhazmat.2007.07.012

Google Scholar

[27] Yu.S. Dzyazko L.N. Ponomaryova, L.M. Rozhdestvenskaya, S.L. Vasilyuk, V.N. Belyakov, Electrodeionization of low-concentrated multicomponent Ni2 +-containing solutions using organic–inorganic ion-exchanger, Desalination 342 (2014) 43-51.

DOI: 10.1016/j.desal.2013.11.030

Google Scholar

[28] Yu.S. Dzyazko, L.M. Rozhdestvenska, S.L. Vasilyuk, K.O. Kudelko, V.N. Belyakov, Composite Membranes Containing Nanoparticles of Inorganic Ion Exchangers for Electrodialytic Desalination of Glycerol, Nanoscale Research Letters 12 (2017) 438.

DOI: 10.1186/s11671-017-2208-4

Google Scholar

[29] Yu. Dzyazko, L. Rozhdestveskaya, Yu. Zmievskii, Yu. Volfkovich, V. Sosenkin, N. Nikolskaya, S. Vasilyuk, V. Myronchuk, V. Belyakov, Heterogeneous Membranes Modified with Nanoparticles of Inorganic Ion-Exchangers for Whey Demineralization, Materials Today: Proceedings 6 (2015) 3864-3873.

DOI: 10.1016/j.matpr.2015.08.003

Google Scholar

[30] M. Laporta, M. Pegoraro, L. Zanderighi, Perfluorosulfonated membrane (Nafion): FT-IR study of the state of water with increasing humidity, Phys. Chem. Chem. Phys., 1 (1999) 4619-4628.

DOI: 10.1039/a904460d

Google Scholar

[31] S. R. Lowry, K.A. Mauritz, An investigation of ionic hydration effects in perfluorosulfonate ionomers by Fourier transform infrared spectroscopy, ACS Publications, J. Am. Chem. Soc., 102 (1980), 4665–4667.

DOI: 10.1021/ja00534a017

Google Scholar

[32] Helfferich F., Ion exchange, second ed., Dover, New Vork, (1995).

Google Scholar

[33] M. Eikerling, A.A. Kornyshev, U.J. Stimming, Electrophysical properties of polymer electrolyte membranes: a random network model, J. Phys. Chem. B 1997, 101, 10807-10820.

DOI: 10.1021/jp972288t

Google Scholar

[34] M.W. Verbrugge, R.F. Hill, Ion and solvent transport in ion-exchange membranes I. A Macrohomogeneous Mathematical Model, J. Elechtrochem. Soc. 137 (1990) 886-893.

DOI: 10.1149/1.2086573

Google Scholar

[35] J.T. Wescott, Mesoscale simulation of morphology in hydrated perfluorosulfonic acid membranes, J. Chem. Phys. 124 (2006) 134702.

DOI: 10.1063/1.2177649

Google Scholar

[36] K.A. Mauritz, R.B. Moore, State of Understanding of Nafion, Chem. Rev. 104 (2004) 4535−4585.

Google Scholar

[37] K. Schmidt-Rohr, Q. Chen, Parallel cylindrical water nanochannels in Nafion fuel-cell membranes, Nature Materials 7 (2008) 75-83.

DOI: 10.1038/nmat2074

Google Scholar

[38] N. P. Berezina, N. A. Kononenko, O. A. Dyomina, N. P. Gnusin, Characterization of ion-exchange membrane materials: properties vs structure, Adv. Colloid. Interface Sci. 139 (2008) 3–28.

DOI: 10.1016/j.cis.2008.01.002

Google Scholar

[39] A. B. Yaroslavtsev, V. V. Nikonenko, V. I. Zabolotsky, Ion transfer in ion-exchange and membrane materials, Russ. Chem. Rev. 72 (2003) 393-421.

DOI: 10.1070/rc2003v072n05abeh000797

Google Scholar

[40] A. B. Yaroslavtsev, V. V. Nikonenko, Ion-exchange membrane materials: properties, modification, and practical application, Nanotechnologies in Russia, 4 (2009) 137–159.

DOI: 10.1134/s199507800903001x

Google Scholar

[41] V. V. Nikonenko, A. B. Yaroslavtsev, G. Pourcelly, Ion transfer through charged membranes: structure, properties, and theory, in: A. Ciferri, A. Perico (Eds.), Ionic interactions in natural and synthetic nacromolecules, Wiley, Hoboken, New Jersey, 2012, pp.267-335.

DOI: 10.1002/9781118165850.ch9

Google Scholar

[42] Y.M. Volfkovich, Influence of the electric double layer on the internal interfaces in ann ion-exchanger on its electrochemical and sorption properties, Soviet Electrochem. 20 (1984) 621-628.

Google Scholar

[43] J. E. Mark, Physical Properties of Polymers Handbook, second ed., Springer, New-York, (2007).

Google Scholar

[44] K. Kimoto, Water absorption and Donnan equilibria of per-fluoroionomer membranes for the chlor-alkali process, Electrochem. Sci. Technol. 130 (1983) 334−341.

DOI: 10.1149/1.2119707

Google Scholar

[45] Flory P.J., Rehner J.J. Statistical mechanics of cross-linked polymer networks. II. Swelling, J. Chem. Phys. 11 (1943) 521-526.

DOI: 10.1063/1.1723792

Google Scholar

[46] K.K. Pushpa, D. Nandan, R.M. Iyer, Thermodynamics of water sorption by perfluorosulphonate (Nafion-117) and polystyrene–divinylbenzene sulphonate (Dowex 50W) ion-exchange resins at 298 ± 1 K, J. Chem. Soc., Faraday Trans. 1. 84 (1988) 2047-2056.

DOI: 10.1039/f19888402047

Google Scholar

[47] A. Nussinovitch, Polymer Macro- and Micro-Gel Beads: Fundamentals and Applications, Springer, New York, Dordrecht, Heidelberg, London, (2010).

DOI: 10.1007/978-1-4419-6618-6

Google Scholar

[48] D. K. Hale, D. J. McCauley, Structure and properties of heterogeneous cation-exchange membranes, Trans. Faraday. Soc. 57 (1961) 135-149.

DOI: 10.1039/tf9615700135

Google Scholar

[49] S. J. Gregg, K. S. W. Sing, Adsorption, surface area and porosity. Academic Press, London (1991).

Google Scholar

[50] C.E. Harland, Ion exchange - theory and practice, second ed., RSC Publisher, Letchworth, (1994).

Google Scholar

[51] M. Brun, J.-F. Quinson, R. Blanc, M. Negre, R. Spitz, M. Barth, Caractérisation texturale de résines en milieu réactionnel, Macromolecular Chemistry and Physics, 182 (1981)  873–882.

DOI: 10.1002/macp.1981.021820319

Google Scholar

[52] J. Rouquerol, G. Baron, R. Denoyel, H. Giesche, J. Groen, P. Klobes, P. Levitz, A.V. Neimark, S. Rigby, R. Skudas, K. Sing, M. Thommes, K. Unger, Liquid intrusion and alternative methods for the characterization of macroporous materials (IUPAC Technical Report), Pure Appl. Chem. 84 (2011) 107–136.

DOI: 10.1351/pac-rep-10-11-19

Google Scholar

[53] Yu. M. Volfkovich, V.S. Bagotsky, Experimental methods for investigations of porous materials and powders, in: Yu.M. Volfkovich, A.N. Filippov V.S. Bagotsky (eds.), structural properties of different materials and powders used in different fields of science and technology, Springer, London, Heidelberg, New York, Dordrecht, pp.1-8.

DOI: 10.1007/978-1-4471-6377-0_1

Google Scholar

[54] Yu.M. Volfkovich, V.E. Sosenkin, Porous structure and wetting of fuel cell components as the factors determining their electrochemical characteristics, Russ. Chem. Rev. 81 (2012) 936-959.

DOI: 10.1070/rc2012v081n10abeh004281

Google Scholar

[55] Yu. M. Volfkovich, A.V. Sakars, A.A. Volinsky, Application of the standard porosimetry method for nanomaterials, Int. J. Nanotechnol. 2 (2005) 292-302.

DOI: 10.1504/ijnt.2005.008066

Google Scholar

[56] Yu. S. Dzyazko, L. N. Ponomareva, Yu. M. Volfkovich, V. E. Sosenkin, Effect of the porous structure of polymer on the kinetics of Ni2+ exchange on hybrid inorganic-organic ionites, Russ. J. Phys. Chem. 86 (2012) 913–919.

DOI: 10.1134/s0036024412060088

Google Scholar

[57] Yu. S. Dzyazko, Y. M. Volfkovich, L. N. Ponomaryova, V. E. Sosenkin, V. V. Trachevskii, V. N. Belyakov, Composite ion-exchangers based on flexible resin containing zirconium hydrophosphate for electromembrane separation, J. Nanosci. Technol. 2 (2016) 43-49.

DOI: 10.1080/01496395.2013.794434

Google Scholar

[58] Yu. Dzyazko, L. Ponomarova, Yu. Volfkovich, V. Tsirina, V. Sosenkin, N. Nikolska, V. Belyakov, Influence of zirconium hydrophosphate nanoparticles on porous structure and sorption capacity of the composites based on ion exchange resin, Chemistry and Chemical Technology, 19 (2016) 329-335.

DOI: 10.23939/chcht10.03.329

Google Scholar

[59] M.T. Bryk, V.I. Zabolotsky,. D. Atamanenko, G.A. Dvorkina, Structural inhomogeneity of ion-exchange membranes in swelling state and methods of its investigations, Khim. Tekhnol. Vody, 11 (1989) 491-498.

Google Scholar

[60] V.I. Zabolotskii, K. V. Protasov, M. V. Sharafan, Sodium chloride concentration by electrodialysis with hybrid organic-inorganic ion-exchange membranes: An investigation of the process, Russ. J. Electrochem. 46 (2010) 979-986.

DOI: 10.1134/s1023193510090028

Google Scholar

[61] Yu.S. Dzyazko, L.N. Ponomaryova, Yu.M. Volfkovich, V.E. Sosenkin, Belyakov V.N. Polymer Ion-Exchangers Modified with Zirconium Hydrophosphate for Removal of Cd2+ Ions from Diluted Solutions, Separ. Sci. Technol. 48 (2013) P. 2140-2149.

DOI: 10.1080/01496395.2013.794434

Google Scholar

[62] Yu.S. Dzyazko, L.N. Ponomaryova, Yu.M. Volfkovich, V.V. Trachevskii, A.V. Palchik, Ion-exchange resin modified with aggregated nanoparticles of zirconium hydrophosphate. Morphology and functional properties, Micropor. Mesopor. Mater. 198 (2014) 55-62.

DOI: 10.1016/j.micromeso.2014.07.010

Google Scholar

[63] G. E. Boyd, B. A. Soldano, Self-diffusion of cations in and through sulfonate polystyrene cation-exchange polymers, J. Amer. Chem. Soc. 75 (1953) 6091-6099.

DOI: 10.1021/ja01120a001

Google Scholar

[64] J. Divisek, M. Mazin, M. Eikerling, H. Schmitz, U. Stimming, Yu. M. Volfkovich, A study of capillary porous structure and sorption properties of Nafion proton-exchange membranes swollen in water, J. Electrochem. Soc. 145 (1998) 2677-2683.

DOI: 10.1149/1.1838699

Google Scholar

[65] C. Sanchez, B. Julián, P. Belleville, M. Popall, Applications of hybrid organic-inorganic nanocomposites, J. Mater. Chem. 15 (2005) 3559-3592.

DOI: 10.1039/b509097k

Google Scholar

[66] M. Rezakazem, M. Sadrzadeh, T. Mohammadi, T. Matsuura, Methods for the preparation of organic–inorganic nanocomposite polymer electrolyte membranes for fuel cells, in: Inamuddin, A. Mohammad, A.M. Asiri (Eds.), Organic-inorganic composite polymer electrolyte membranes, Switzerland, Springer, 2017, pp.311-325.

DOI: 10.1007/978-3-319-52739-0_11

Google Scholar

[67] D.J. Jones, J. Roziere, in W. Vielstich, H.A. Gasteiger, A. Lamm (eds.), Handbook of fuel cells. fundamentals, technology, and applications, v.3, Fuel cell technology and applications, Wiley, Chicheter, 2003, p.447–455.

Google Scholar

[68] Md. R. Khan, Rafiuddin, Transport phenomena of inorganic–organic cation exchange nanocomposite membrane: a comparative study with different methods, J. Nanostructure Chem. 4 (2014) 95 DOI 10.1007/s40097-014-0095-0.

DOI: 10.1007/s40097-014-0095-0

Google Scholar

[69] J. Mosa, A. Durán, M. Aparicio, Sulfonic acid-functionalized hybrid organic–inorganic proton exchange membranes synthesized by sol–gel using 3-mercaptopropyl trimethoxysilane (MPTMS), J. Power Sources 297 (2015) 208-216.

DOI: 10.1016/j.jpowsour.2015.06.119

Google Scholar

[70] Hay J.N., Raval H.M., Synthesis of organic-inorganic hybrids via the non-hydrolytic sol-gel process, Chem. Mater. 13 (2001) 3396–3403.

DOI: 10.1021/cm011024n

Google Scholar

[71] J. Chen, M. Asano, Y. Maekawa, M. Yoshida, Polymer electrolyte hybrid membranes prepared by radiation grafting of p-styryltrimethoxysilane into poly(ethylene-co-tetrafluoroethylene) films, J. Membr. Sci. 296 (2007) 77-82.

DOI: 10.1016/j.memsci.2007.03.017

Google Scholar

[72] B. Akhavan, K. Jarvis,  P. Majewski, Plasma Polymer-Functionalized Silica Particles for Heavy Metals Removal, ACS Appl. Mater. Interfaces 7 (2015) 4265–4274.

DOI: 10.1021/am508637k

Google Scholar

[73] L. Zhang, L. Ling, M. Xiao, D. Han, Sh. Wang, Yu. Meng, Effectively suppressing vanadium permeation in vanadium redox flow battery application with modified Nafion membrane with nacre-like nanoarchitectures, Journal of Power Sources 352 (2017) 111-117.

DOI: 10.1016/j.jpowsour.2017.03.124

Google Scholar

[74] Yu.-K. Lu, X.-P. Yan, An Imprinted Organic−Inorganic Hybrid Sorbent for Selective Separation of Cadmium from Aqueous Solution, ACS Publ., Anal. Chem. 76 (2004) 453–457.

DOI: 10.1021/ac0347718

Google Scholar

[75] T. V. Mal'tseva, E. A.  Kolomiets, S. L. Vasilyuk, Hybrid adsorbents based on hydrated oxides of Zr(IV), Ti(IV), Sn(IV), and Fe(III) for arsenic removal, J. Water Chem. Technol. 39 (2017) 214-219.

DOI: 10.3103/s1063455x17040063

Google Scholar

[76] L.M. Blaney, S. Cinar, A.K. SenGupta, Hybrid anion exchanger for trace phosphate removal from water and wastewater, Water Res. 41 (2007) 1603-1613.

DOI: 10.1016/j.watres.2007.01.008

Google Scholar

[77] S.M. Hosseini, ,A. Gholami, P. Koranian, M. Nemati, S.S. Madaeni, ,A.R. Moghadassi, Electrochemical characterization of mixed matrix heterogeneous cation exchange membrane modified by aluminum oxide nanoparticles: Mono/bivalent ionic transportation, J. Taiwan Institute of Chemical Engineering 45 (2014) 1241-1248.

DOI: 10.1016/j.jtice.2014.01.011

Google Scholar

[78] S. M. Hosseini, M. Nemati, F. Jeddi, E. Salehi, A. R. Khodabakhshi, S. S.Madaeni, Fabrication of mixed matrix heterogeneous cation exchange membrane modified by titanium dioxide nanoparticles: Mono/bivalent ionic transport property in desalination, Desalination 359 (2015) 167-175.

DOI: 10.1016/j.desal.2014.12.043

Google Scholar

[79] Y. Gao,  Ch. Chen,  H. Chen,  R. Zhang,  X. Wang, Synthesis of a novel organic–inorganic hybrid of polyaniline/titanium phosphate for Re(VII) removal, Dalton Transactions 44(2015) 8917-8925.

DOI: 10.1039/c5dt01093d

Google Scholar

[80] A. K. Sahu, S. D. Bhat, S. Pitchumani, P. Sridhar, V. Vimalan, C. George, N. Chandrakumar, A. K. Shukla, Novel organic–inorganic composite polymer-electrolyte membranes for DMFCs, J. Membr. Sci. 345 (2009) 305–314.

DOI: 10.1016/j.memsci.2009.09.016

Google Scholar

[81] B.S. Rathore, G. Sharma, D. Pathania, V.K. Gupta, Synthesis, characterization and antibacterial activity of cellulose acetate–tin (IV) phosphate nanocomposite, Carbohydrate Polymers 103 (2014) 221-227.

DOI: 10.1016/j.carbpol.2013.12.011

Google Scholar

[82] A.A. Khan, M.M. Alam, Synthesis, characterization and analytical applications of a new and novel organic–inorganic, composite material as a cation exchanger and Cd(II) ion-selective membrane electrode: polyaniline Sn(IV) tungstoarsenate, React. Func. Polym. 55 (2003) 277-290.

DOI: 10.1016/s1381-5148(03)00018-x

Google Scholar

[83] M. Vitadello, E. Negro, S. Lavina, G. Pace, A. Safari, V, Di Noto, Vibrational Studies and Properties of Hybrid Inorganic−Organic Proton Conducting Membranes Based on Nafion and Hafnium Oxide Nanoparticles, J. Phys. Chem. B 112 (2008) 16590–16600.

DOI: 10.1021/jp804117w

Google Scholar

[84] S.A. Novikova, E.Yu. Safronova, A.A. Lysova, A. B. Yaroslavtsev, Influence of incorporated nanoparticles on the ionic conductivity of MF-4SC membrane, Mendeleev Commun. 20 (2010) 156–157.

DOI: 10.1016/j.mencom.2010.05.011

Google Scholar

[85] E. A. Mistri, S. Banerjee, Cross-linked sulfonated poly(ether imide)/silica organic–inorganic hybrid materials: proton exchange membrane properties, RSC Adv. 4 (2014) 22398-22410.

DOI: 10.1039/c4ra02137a

Google Scholar

[86] E. Abouzari-lotf, M. M. Nasef, M. Zakeri, A. Ahmad, A. Ripin, Composite Membranes Based on Heteropolyacids and Their Applications in Fuel Cells, in: Inamuddin, A. Mohammad, A.M. Asiri (eds.), Organic-Inorganic Composite Polymer Electrolyte Membranes, Springer, Switzerland, 2017, pp.99-133.

DOI: 10.1007/978-3-319-52739-0_5

Google Scholar

[87] A. Muthumeenal, A.J. Rethinam, A. Nagendran, Sulfonated polyethersulfone based composite membranes containing heteropolyacids laminated with polypyrrole for electrochemical energy conversion devices, Solid State Ionics 296 (2016) 106-113.

DOI: 10.1016/j.ssi.2016.09.010

Google Scholar

[88] A. A. Khan, M. M. Alam, New and novel organic–inorganic type crystalline polypyrrolel/ polyantimonic acid, composite system: preparation, characterization and analytical applications as a cation-exchange material and Hg(II) ion-selective membrane electrode, Analyt. Chim. Acta, 504 (2004) 253-264.

DOI: 10.1016/j.aca.2003.10.054

Google Scholar

[89] A. A. Khan, M. M. Alam, Inamuddin, F. Mohammad, Electrical conductivity and ion-exchange kinetic studies of a crystalline type organic–inorganic, cation-exchange material: polypyrrole/polyantimonic acid composite system, (Sb2O5) (–C4H2NH–)·nH2O.

DOI: 10.1016/j.jelechem.2004.05.025

Google Scholar

[90] S. Sasikala, S.Meenakshi, S.D. Bhat, A.K. Sahu, Functionalized bentonite clay-sPEEK based composite membranes for direct methanol fuel cells, Electrochim. Acta 135 (2014) 232-241.

DOI: 10.1016/j.electacta.2014.04.180

Google Scholar

[91] X. Liao, L. Ren, D. Chen, X.Liu, H. Zhang, Nanocomposite membranes based on quaternized polysulfone and functionalized montmorillonite for anion-exchange membranes, J. Power Sources, 286 (2015) 258-263.

DOI: 10.1016/j.jpowsour.2015.03.182

Google Scholar

[92] Xu T., Hou W., Shen X., Wu H., Li X., Wang J., Jiang Zh. Sulfonated titania submicrospheres-doped sulfonated poly(ether ether ketone) hybrid membranes with enhanced proton conductivity and reduced methanol permeability, J. Power Sources 196 (2011) 4934–4942.

DOI: 10.1016/j.jpowsour.2011.02.017

Google Scholar

[93] Y He, Y Fu, L Geng, Y Zhao, C Lü, A facile route to enhance the properties of polymer electrolyte-based organic–inorganic hybrid proton exchange membranes, Solid State Ionics 283 (2015) 1–9.

DOI: 10.1016/j.ssi.2015.11.012

Google Scholar

[94] A. K. Sahu, S. D. Bhat, S. Pitchumani, P. Sridhar, V. Vimalan, C. George, N. Chandrakumar, A. K. Shukla, Novel organic–inorganic composite polymer-electrolyte membranes for DMFCs, J. Membr. Sci 345 (2009) 305-314.

DOI: 10.1016/j.memsci.2009.09.016

Google Scholar

[95] N. Perlova, Y, Dzyazko, O. Perlova, A. Palchik, V Sazonova, Formation of zirconium hydrophosphate nanoparticles and their effect on sorption of uranyl cations, Nanoscale Research Letters 12 (2014) 209 doi.org/10.1186/s11671-017-1987-y.

DOI: 10.1186/s11671-017-1987-y

Google Scholar

[96] A. S.Myerson, Handbook of Industrial Crystallization, Woburn, Butterworth-Heinemann, (2002).

Google Scholar

[97] Yu.S. Dzyazko, Yu.M. Volfkovich, V.E. Sosenkin, N.F. Nikolskaya, Yu.P. Gomza, Composite inorganic membranes containing nanoparticles of hydrated zirconium dioxide for electrodialytic separation, Nanoscale Research Letters, 9 (2014) 271 doi.org/10.1186/1556-276X-9-271.

DOI: 10.1186/1556-276x-9-271

Google Scholar

[98] Yu.S. Dzyazko, A.S. Rudenko, Yu.M. Yukhin, A.V. Palchik, V.N. Belyakov, Modification of ceramic membranes with inorganic sorbents. Application to electrodialytic recovery of Cr(VI) anions from multicomponent solution, Desalination, 342 (2014) 43-51.

DOI: 10.1016/j.desal.2013.12.019

Google Scholar

[99] Q. Zhang, P. Jiang, B. Pan,  W. Zhang,  L. Lv, Impregnating zirconium phosphate onto porous polymers for lead removal from waters: effect of nanosized particles and polymer chemistry, ACS Publ., Ind. Eng. Chem. Res. 48  (2009) 4495–4499.

DOI: 10.1021/ie8016847

Google Scholar

[100] B. Pan, B. Pan, X. Chen, W. Zhang, X. Zhang, Q. Zhang, Q. Zhang, J. Chen, Preparation and preliminary assessment of polymer-supported zirconium phosphate for selective lead removal from contaminated water, Water Res. 40 (2006) 2938– 2946.

DOI: 10.1016/j.watres.2006.05.028

Google Scholar

[101] C. Yang, S. Srinivasan, A. S. Aricò, P. Cretı, V. Baglio, V. Antonucci, Composite Nafion/zirconium phosphate membranes for direct methanol fuel cell operation at high temperature, Electrochem. Solid-State Lett. 4 (2001)  A31-A34.

DOI: 10.1149/1.1353157

Google Scholar

[102] J. Chabé, M. Bardet, G. Gébel, NMR and X-ray diffraction study of the phases of zirconium phosphate incorporated in a composite membrane Nafion®-ZrP, Solid State Ionics 229 (2012) 20–25.

DOI: 10.1016/j.ssi.2012.10.006

Google Scholar

[103] I. Nicotera, A. Khalfan, G. Goenaga, T. Zhang, A. Bocarsly, S. Greenbaum, NMR investigation of water and methanol mobility in nanocomposite fuel cell membranes, Ionics 14 (2008) 243–253.

DOI: 10.1007/s11581-007-0178-8

Google Scholar

[104] S.A. Novikova, E.Yu. Safronova, A.A. Lysova, A.B. Yaroslavtsev, Influence of incorporated nanoparticles on the ionic conductivity of MF-4SC membrane, Mendeleev Commun. 20 (2010) 156–157.

DOI: 10.1016/j.mencom.2010.05.011

Google Scholar

[105] R.K. Nagarale, G.S. Gohil, V,K. Shahi, R. Rangarajan, Organic-inorganic hybrid Membrane: thermally stable cation-exchange membrane prepared by the sol-gel method, Macromolecules, 37 (2004) 10023-10030.

DOI: 10.1021/ma048404p

Google Scholar

[106] A.A. Khan, A. Khan, Inamuddin, Preparation and characterization of a new organic–inorganic nano-composite poly-o-toluidine Th(IV) phosphate: Its analytical applications as cation-exchanger and in making ion-selective electrode, Talanta 72 (2007) 699–710.

DOI: 10.1016/j.talanta.2006.11.044

Google Scholar

[107] Yu.S. Dzyazko, O.V. Perlova, N.A. Perlova, Yu.M. Volfkovich, V.E. Sosenkin, V.V. Trachevskii, V.F. Sazonova, A.V. Palchik, Composite cation-exchange resins containing zirconium hydrophosphate for purification of water from U(VI) cations, Desalination and Water Treatment, 69 (2017) 142-152.

DOI: 10.5004/dwt.2017.0686

Google Scholar

[108] G. Alberti, M. Casciola, D. Capitani, A. Donnadio, R. Narducci, M. Pica, M. Sganappa, Novel Nafion–zirconium phosphate nanocomposite membranes with enhanced stability of proton conductivity at medium temperature and high relative humidity, Electrochim. Acta 52 (2007) 8125–8132.

DOI: 10.1016/j.electacta.2007.07.019

Google Scholar

[109] Yu. S. Dzyazko, L. M. Rozhdestvenskaya, Yu. G. Zmievskii, Yu. M. Volfkovich, V. E. Sosenkin, V. V. Zakharov, V. G. Myronchuk, V. N. Belyakov, A.V. Palchik, Electromembrane recycling of liquid wastes of dairy industry using organic-inorganic membranes, Issues of Chemistry and Chemical Technology 6 (2015) 40-46.

DOI: 10.1016/j.matpr.2021.11.301

Google Scholar

[110] R. Taherian, Experimental and analytical model for the electrical conductivity of polymer-based nanocomposites, Composites Sci. Technol. 123 (2016) 17-31.

DOI: 10.1016/j.compscitech.2015.11.029

Google Scholar

[111] M. Casciola, G. Alberti, A. Ciarletta, A. Cruccolini, P. Piaggio, M. Pica, Nanocomposite membranes made of zirconium phosphate sulfophenylenphosphonate dispersed in polyvinylidene fluoride: Preparation and proton conductivity Solid State Ionics 176 (2005) 2985 – 2989.

DOI: 10.1016/j.ssi.2005.09.036

Google Scholar

[112] X. Tong, B. Zhang, Y. Fan, Y. Chen, Mechanism exploration of ion transport in nanocomposite cation exchange membranes, ACS Publ., Appl. Mater. Interfaces, 9 (2017) 13491–13499.

DOI: 10.1021/acsami.7b01541

Google Scholar

[113] A.A. Khan, L. Paquiza, Electrical behavior of conducting polymer based polymeric–inorganic, nanocomposite: Polyaniline and polypyrrole zirconium titanium phosphate, Synthetic Metals 161 (2011) 899–905.

DOI: 10.1016/j.synthmet.2011.02.022

Google Scholar

[114] E.V. Kuznetsova, E.Yu. Safronova, V.K. Ivanov, G.Yu. Yurkov, A.G. Mikheev, D.V. Golubenko, A.B. Yaroslavtsev, Transport properties of hybrid materials based on MF-4SC perfluorinated ion exchange membranes and nanosized ceria, Nanotechnologies in Russia 8 (2013) 461–465.

DOI: 10.1134/s1995078013040071

Google Scholar

[115] A.B. Yaroslavtsev, Yu.P. Yampolskii, Hybrid membranes containing inorganic nanoparticles, Mendeleev Commun. 24 (2014) 319–326.

DOI: 10.1016/j.mencom.2014.11.001

Google Scholar

[116] S. Lagergren, About the theory of so called adsorption of soluble substances, Kungliga Svenska Vetenskapsakademiens Handlingar, 24 (1898) 1–39.

Google Scholar

[117] Y.S. Ho, G. McKay, Pseudo-second order model for sorption processes, Process Biochem., 34 (1999) 451–465.

DOI: 10.1016/s0032-9592(98)00112-5

Google Scholar

[118] G. E. Boyd, B. A. Soldano, Self-diffusion of cations in and through sulfonated polystyrene cation-exchange polymers, ACS Publ., J. Am. Chem. Soc., 75 (1953) 6091–6099.

DOI: 10.1021/ja01120a001

Google Scholar

[119] A.A. Khan, A. Khan, Electrical conductivity and cation exchange kinetic studies on poly-o-toluidine Th(IV) phosphate nano-composite cation exchange material, Talanta 73 (2007) 850–856.

DOI: 10.1016/j.talanta.2007.05.003

Google Scholar

[120] Yu.S. Dzyazko, L.M. Rozhdestvenskaya. S.L Vasilyuk, V.N. Belyakov, N. Kabay, M. Yuksel, O. Arar, U. Yuksel, Electrodeionization of Cr (VI)-containing solution. Part I: Chromium transport through granulated inorganic ion-exchanger, Chem.Eng.Comm. – 196 (2009) 3 - 21.

DOI: 10.1080/00986440802303681

Google Scholar

[121] Yu.S. Dzyazko, V.V. Trachevskii, L.M. Rozhdestvenskaya, S.L. Vasilyuk, V.N. Belyakov, Russ. J. Phys. Chem. 87 (2013) 840-845.

DOI: 10.1134/s0036024413050063

Google Scholar

[122] Z.A. Al-Othman, M.M. Alam, M. Naushad, Heavy toxic metal ion exchange kinetics: Validation of ion exchange process on composite cation exchanger nylon 6,6 Zr(IV) phosphate, J. Ind. Eng. Chem. 19 (2013) 956–960.

DOI: 10.1016/j.jiec.2012.11.016

Google Scholar

[123] A.A. Khan, L. Paquiza, Determination of ion-exchange kinetic parameters for the conducting nanocomposite polyaniline zirconium titanium phosphate, Synth. Met. 190 (2014) 66–71.

DOI: 10.1016/j.synthmet.2014.02.001

Google Scholar

[124] L. Xiao, H. Zhang, E. Scanlon, L.S. Ramanathan, E.-W. Choe, D. Rogers, T. Apple, B.C. Benicewicz, High-temperature polybenzimidazole fuel cell membranes via a sol−gel process, ACS Publ., Chem. Mater. 17 (2005) 5328–5333.

DOI: 10.1021/cm050831+

Google Scholar

[125] M.J. Parnian, S. Rowshanzamir, F. Gashoul, Comprehensive investigation of physicochemical and electrochemical properties of sulfonated poly (ether ether ketone) membranes with different degrees of sulfonation for proton exchange membrane fuel cell applications, Energy, 125 (2017), 614-628.

DOI: 10.1016/j.energy.2017.02.143

Google Scholar

[126] B. Muriithi, D.A. Loy, Proton Conductivity of Nafion/Ex-Situ Sulfonic Acid-Modified Stöber Silica Nanocomposite Membranes As a Function of Temperature, Silica Particles Size and Surface Modification, Membranes 6 (2016) 12.

DOI: 10.3390/membranes6010012

Google Scholar

[127] J.-H. Won, H.-J. Lee, J.-M. Lim, J.-H. Kim, Y.T. Hong, S.-Y. Lee, Anomalous behavior of proton transport and dimensional stability of sulfonated poly(arylene ether sulfone) nonwoven/silicate composite proton exchange membrane with dual phase co-continuous morphology, J. Membrane Sci. 450 (2014) 235–241.

DOI: 10.1016/j.memsci.2013.09.019

Google Scholar

[128] T. Ossiander, C. Heinzl, S. Gleich, F. Schönberger, P. Völk, M. Welsch, C. Scheu, Influence of the size and shape of silica nanoparticles on the propertiesand degradation of a PBI-based high temperature polymerelectrolyte membrane, J. Membr. Sci. 454 (2014) 12-19.

DOI: 10.1016/j.memsci.2013.12.004

Google Scholar

[129] T. Xu, W. Hou, X. Shen, H. Wu, X. Li, J. Wang, Zh. Jiang, Sulfonated titania submicrospheres-doped sulfonated poly(ether ether ketone) hybrid membranes with enhanced proton conductivity and reduced methanol permeability, J. Power Sources 196 (2011) 4934–4942.

DOI: 10.1016/j.jpowsour.2011.02.017

Google Scholar

[130] Sh. Feng, Yu. Shang, G. Liu, W. Dong, X. Xie, J. Xu, V.K. Mathur, Novel modification method to prepare crosslinked sulfonated poly(ether ether ketone)/silica hybrid membranes for fuel cells, J. Power Sources 195 (2010) 6450–6458.

DOI: 10.1016/j.jpowsour.2010.02.067

Google Scholar

[131] Y. He, Yu. Fu, L. Geng, Y. Zhao, Ch. Lü, A facile route to enhance the properties of polymer electrolyte-based organic–inorganic hybrid proton exchange membranes, Solid State Ionics 283 (2015) 1–9.

DOI: 10.1016/j.ssi.2015.11.012

Google Scholar

[132] B. Chen, G. Li, L. Wang, R. Chen, F. Yi, Proton conductivity and fuel cell performance of organic-inorganic hybrid membrane based on poly(methyl methacrylate)/silica, Int. J. Hydrogen Energy 38 (2013) 7913-7923.

DOI: 10.1016/j.ijhydene.2013.03.167

Google Scholar

[133] F. Niepceron, B. Lafitte, H. Galiano, J. Bigarré, E. Nicol, J.-F. Tassin, Composite fuel cell membranes based on an inert polymer matrix and proton-conducting hybrid silica particles, J. Membr. Sci. 338 (2009) 100–110.

DOI: 10.1016/j.memsci.2009.04.022

Google Scholar

[134] A. Ozden, M. Ercelik, Y. Ozdemir, Y. Devrim, C.O. Colpan, Enhancement of direct methanol fuel cell performance through the inclusion of zirconium phosphate, Int. J. Hydrogen Energy 42 (2017) 21501-21517.

DOI: 10.1016/j.ijhydene.2017.01.188

Google Scholar

[135] J. Pandey, M.M. Seepana, A. Shukla, Zirconium phosphate based proton conducting membrane for DMFC application, Int. J. Hydrogen Energy 40 (2015) 9410-9421.

DOI: 10.1016/j.ijhydene.2015.05.117

Google Scholar

[136] H. Ahmad, S.K. Kamarudin, U.A. Hasran, W.R.W. Daud, A novel hybrid Nafion-PBI-ZP membrane for direct methanol fuel cells, Int. J. Hydrogen Energy 36 (2011) 14668-14677.

DOI: 10.1016/j.ijhydene.2011.08.044

Google Scholar

[137] A.K. Sahu, S.D. Bhat, S. Pitchumani, P. Sridhar, V. Vimalan, C. George, N. Chandrakumar, A.K. Shukla. Novel organic–inorganic composite polymer-electrolyte membranes for DMFCs, J. Membr. Sci. 345 (2009) 305–314.

DOI: 10.1016/j.memsci.2009.09.016

Google Scholar

[138] Yu.M. Volfkovich, V.E. Sosenkin, N.F. Nikolskaya, Porous structure of the catalyst layers of electrodes in a proton-exchange membrane fuel cell: A stage-by-stage study, Russ. J. Electrochem. 46(2010) 336-344.

DOI: 10.1134/s1023193510030122

Google Scholar

[139] Yu.M. Volfkovich, V.E. Sosenkin, N.F. Nikolskaya, Hydrophilic-hydrophobic and sorption properties of the catalyst layers of electrodes in a proton-exchange membrane fuel cell: A stage-by-stage study, Russ. J. Electrochem. 46(2010) 438-449.

DOI: 10.1134/s1023193510040099

Google Scholar

[140] S. Gottesfeld, T.A. Zawodzinski, Polymer electrolyte fuel cells, in:R.C. Alkire, H.Gerischer, D.M. Kolb C.W. Tobias (eds),Advances in electrochemical science and engineering, V. 5.,  Wiley,Weinheim, 1997,  pp.196-301.

DOI: 10.1002/9783527616794.ch4

Google Scholar

[141] Zh. Zhang, J. Liu, J.Gu,L. Su,  L. Cheng, An overview of metal oxide materials as electrocatalysts and supports for polymer electrolyte fuel cells, Energy Environ. Sci. 7 (2014) 2535-2558.

DOI: 10.1039/c3ee43886d

Google Scholar

[142] E. Antonini, Composite materials: An emerging class of fuel cell catalyst supports, Appl. Catalysis B: Environmental 100 (2010) 413–426.

DOI: 10.1016/j.apcatb.2010.08.025

Google Scholar

[143] M. Shao, R. Zhang, Zh. Li, M. Wei, D. G. Evans, X. Duan, Layered double hydroxides toward electrochemical energy storage and conversion: design, synthesis and applications, : Chem. Commun., 51 (2015) 15880.

DOI: 10.1039/c5cc07296d

Google Scholar

[144] B. Rajesh, K.R. Thampi, J.-M. Bonard, N. Xanthapolous, H.J. Mathieu, B. Viswanathan, Pt supported on polyaniline-V 2 O 5 nanocomposite as the electrode material for methanol oxidation, Electrochem. Solid-State Lett. 5 (2002) E71–E74.

DOI: 10.1149/1.1518610

Google Scholar

[145] H. Pang, C. Huang, J. Chen, B. Liu, Y. Kuang, X. Zhang, Preparation of polyaniline–tin dioxide composites and their application in methanol electro-oxidation, J. Solid State Electrochem. 14 (2010) 169–174.

DOI: 10.1007/s10008-009-0892-4

Google Scholar

[146] T. Maiyalagan, B. Viswanathan, Synthesis, characterization and electrocatalytic activity of Pt supported on poly (3,4-ethylenedioxythiophene)–V2O5nanocomposites electrodes for methanol oxidation, Mater. Chem. Phys. 121 (2010) 165–171.

DOI: 10.1016/j.matchemphys.2010.01.003

Google Scholar

[147] T. Benvenuti, M.A. Siqueira Rodrigues, A. Mouro Bernardes, J. Zoppas-Ferreira, Closing the loop in the electroplating industry by electrodialysis, J. Cleaner Production, 155 (2017) 130-138.

DOI: 10.1016/j.jclepro.2016.05.139

Google Scholar

[148] M. H. Dore, Global Drinking Water Management and Conservation: Optimal Decision-Making, Springer, Heidelberg, New York, Dordrecht, London, (2015).

Google Scholar

[149] D. Cardoso Buzzi, L.S. Viegas, M.A. Siqueira Rodrigues, A.M. Bernardes, J.A. Soares Tenório, Water recovery from acid mine drainage by electrodialysis, Minerals Engineering, 40 (2013) 82-89.

DOI: 10.1016/j.mineng.2012.08.005

Google Scholar

[150] M.-L. Lameloise, R. Lewandowsky, Recovering  L-malic acid from a beverage industry waste water: Experimental study of the conversion stage using bipolar membrane electrodialysis, J. Membr. Sci. 403-404 (2012) 196-202.

DOI: 10.1016/j.memsci.2012.02.053

Google Scholar

[151] Y. Tanaka, R. Ehara, S. Itoi, T. Goto, Ion-exchange membrane electrodialytic salt production using brine discharged from a reverse osmosis seawater desalination plant, 222 (2003) 71-86.

DOI: 10.1016/s0376-7388(03)00217-5

Google Scholar

[152] J. Lemaire, C.-L.Blanc, F. Duval. M.-A. Théoleyre, D. Pareau, Purification of pentoses from hemicellulosic hydrolysates with sulfuric acid recovery by using electrodialysis, Separ. Purif, Technol. 166 (2016) 181-186.

DOI: 10.1016/j.seppur.2016.04.030

Google Scholar

[153] D. Rindfleisch, B. Syska, Z. Lazarova, K. Schügerl, Integrated membrane extraction, enzymic conversion and electrodialysis for the synthesis of ampicillin from penicillin G, Proc. Biochem. 32 (1997) 605-616.

DOI: 10.1016/s0032-9592(97)00012-5

Google Scholar

[154] L. Yu, A. Lin, L. Zhang, W. Jiang, Large scale experiment on the preparation of vitamin C from sodium ascorbate using bipolar membrane electrodialysis, Chem. Eng. Commun. 189 (2002) 237-246.

DOI: 10.1080/00986440211835

Google Scholar

[155] C. Baldasso, L. D. F. Marczak, I. C. Tessaro, A Comparison of Different Electrodes Solutions on Demineralization of Permeate Whey, Separ. Sci. Technol. 49 (2014) 179-185.

DOI: 10.1080/01496395.2013.837923

Google Scholar

[156] M. Kumar, M.A. Khan, Z.A Al-Othman, M.R. Siddiqui, Polyaniline modified organic–inorganic hybrid cation-exchange membranes for the separation of monovalent and multivalent ions, Desalination 325 (2013) 95–103.

DOI: 10.1016/j.desal.2013.06.022

Google Scholar

[157] M. Kumar, B.P. Tripathi, V.K. Shahi, Ionic transport phenomenon across sol–gel derived organic–inorganic composite mono-valent cation selective membranes, J. Membr. Sci. 340 (2009) 52–61.

DOI: 10.1016/j.memsci.2009.05.010

Google Scholar

[158] T. Sata, Ion exchange membranes: preparation, characterization, modification and application, RSC Publisher, Cambridge, (2007).

Google Scholar

[159] M. A. Khan, M. Kumar, Z. A. Alothman, Preparation and characterization of organic–inorganic hybrid anion-exchange membranes for electrodialysis, J. Ind. Eng. Chem. 21 (2015) 723–730.

DOI: 10.1016/j.jiec.2014.04.002

Google Scholar