Mass Transport through Composite Asymmetric Membranes

Article Preview

Abstract:

In recent years, membrane separation technology has emerged as efficient and promising separation process from laboratory scale applications to wide range of technical industrial applications. The development of composite asymmetric membrane is a major breakthrough in membrane research field, as this membrane offers significantly high selectivity without affecting the mechanical durability of the membranes. In this chapter, structural characteristics and different fabrication techniques of composite membranes are reviewed. Moreover the mass transfer mechanism through the composite asymmetric membrane is described in details following solution-diffusion theory, Knudsen diffusion, and series resistance model. Composite membranes are preferred over others because of the high flux and enhanced selectivity without disturbing the mechanical stability of the membranes. These membranes are now widely employed in the applications of reverse osmosis (RO), nanofiltration (NF), pervaporation, gas separation, hydrocarbon fractionations, etc. As composite asymmetric membranes are “tailor-made” in nature, membrane characteristics can be tuned accordingly depending on their end use. Therefore plentiful research opportunities still exist to elevate their performance ability in terms of stability, selectivity and fouling resistance, which will in turn augment its application domain.

You might also be interested in these eBooks

Info:

Periodical:

Diffusion Foundations (Volume 23)

Pages:

151-172

Citation:

Online since:

August 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E. Drioli, L. Giorno, Comprehensive membrane science and engineering, Newnes, (2010).

Google Scholar

[2] K. Channabasappa, Membrane technology for water reuse application, Desalination 23(1-3) (1977) 495-514.

DOI: 10.1016/s0011-9164(00)82549-7

Google Scholar

[3] R.E. Lacey, S. Loeb, Industrial processing with membranes, (1972).

Google Scholar

[4] F. Kiil, Development of a parallel-flow artificial kidney in plastics, Acta Chir Scand Suppl 253 (1960) 142-50.

Google Scholar

[5] A.S. Michaels, New separation technique for CPI, Chem. Eng. Prog. 64(12) (1968) 31.

Google Scholar

[6] H.K. Lonsdale, The growth of membrane technology, J. Membr. Sci. 10 (1982) 81.

Google Scholar

[7] H. Strathmann, L. Giorno, E. Drioli, An introduction to membrane science and technology, CNR publisher, Roma, (2006).

Google Scholar

[8] H. Strathmann, Membrane separation processes, J. Membr. Sci. 9 (1981) 121-189.

Google Scholar

[9] E. Drioli, C.A. Quist-Jensen, L. Giorno, Molecular Weight Cutoff, Encyclopedia of Membranes, Springer, 2015, pp.1-2.

DOI: 10.1007/978-3-642-40872-4_2216-1

Google Scholar

[10] M. Cheryan, Ultrafiltration and microfiltration handbook, CRC press, (1998).

Google Scholar

[11] X. Li, J. Li, Fluxes and Driving Forces in Membrane Separation Processes, Encyclopedia of Membranes, Springer2015, pp.1-3.

Google Scholar

[12] H. Strathmann, Membrane separation processes: current relevance and future opportunities, AIChE Journal 47 (2001) 1077-1087.

DOI: 10.1002/aic.690470514

Google Scholar

[13] J. Wijmans, A. Athayde, R. Daniels, J. Ly, H. Kamaruddin, I. Pinnau, The role of boundary layers in the removal of volatile organic compounds from water by pervaporation, J. Membr. Sci. 109 (1996) 135-146.

DOI: 10.1016/0376-7388(95)00194-8

Google Scholar

[14] C. Yeom, S. Lee, H. Song, J. Lee, A characterization of concentration polarization in a boundary layer in the permeation of VOCs/N 2 mixtures through PDMS membrane, J. Membr. Sci. 205 (2002) 155-174.

DOI: 10.1016/s0376-7388(02)00075-3

Google Scholar

[15] S. Zhao, Z. Li, Y. Liu, L.e. Wang, Simulation of binary gas separation in hollow fiber membrane-acetylene dehydration, Desalination 233 (2008) 310-318.

DOI: 10.1016/j.desal.2007.09.056

Google Scholar

[16] R. Wang, S. Liu, T. Lin, T. Chung, Characterization of hollow fiber membranes in a permeator using binary gas mixtures, Chem. Eng. Sci. 57 (2002) 967-976.

DOI: 10.1016/s0009-2509(01)00435-3

Google Scholar

[17] K. Haraya, T. Hakuta, H. Yoshitome, S. Kimura, A study of concentration polarization phenomenon on the surface of a gas separation membrane, Sep. Sci. Technol. 22 (1987) 1425-1438.

DOI: 10.1080/01496398708058408

Google Scholar

[18] H. Takaba, S.-i. Nakao, Computational fluid dynamics study on concentration polarization in H 2/CO separation membranes, J. Membr. Sci. 249 (2005) 83-88.

DOI: 10.1016/j.memsci.2004.09.038

Google Scholar

[19] J. Zhang, D. Liu, M. He, H. Xu, W. Li, Experimental and simulation studies on concentration polarization in H 2 enrichment by highly permeable and selective Pd membranes, J. Membr. Sci. 274 (2006) 83-91.

DOI: 10.1016/j.memsci.2005.07.047

Google Scholar

[20] A. Caravella, G. Barbieri, E. Drioli, Concentration polarization analysis in self-supported Pd-based membranes, Sep. Purif. Technol. 66 (2009) 613-624.

DOI: 10.1016/j.seppur.2009.01.008

Google Scholar

[21] A. Caravella, Concentration Polarization Coefficient (CPC), Encyclopedia of Membranes (2015) 1-3.

Google Scholar

[22] P. Brian, Mass transport in reverse osmosis, Desalination by reverse osmosis, MIT Press, Cambridge, 1966, p.181.

Google Scholar

[23] W.F. Blatt, A. Dravid, A.S. Michaels, L. Nelsen, Solute polarization and cake formation in membrane ultrafiltration: causes, consequences and control techniques, In: Flinn JE (ed), Plenum Press, New York, (1970).

DOI: 10.1007/978-1-4684-1851-4_4

Google Scholar

[24] R. Bian, K. Yamamoto, Y. Watanabe, The effect of shear rate on controlling the concentration polarization and membrane fouling, Desalination 131 (2000) 225-236.

DOI: 10.1016/s0011-9164(00)90021-3

Google Scholar

[25] E.M. Hoek, M. Elimelech, Cake-enhanced concentration polarization: a new fouling mechanism for salt-rejecting membranes, Environ. Sci. Technol. 37 (2003) 5581-5588.

DOI: 10.1021/es0262636

Google Scholar

[26] E. Cornelissen, D. Harmsen, K. De Korte, C. Ruiken, J.-J. Qin, H. Oo, L. Wessels, Membrane fouling and process performance of forward osmosis membranes on activated sludge, J. Membr. Sci. 319 (2008) 158-168.

DOI: 10.1016/j.memsci.2008.03.048

Google Scholar

[27] G. Pearce, Introduction to membranes: Fouling control, Filtr. Sep. 44 (2007) 30-32.

Google Scholar

[28] R. Field, D. Wu, J. Howell, B. Gupta, Critical flux concept for microfiltration fouling, J. Membr. Sci. 100 (1995) 259-272.

DOI: 10.1016/0376-7388(94)00265-z

Google Scholar

[29] P. Bacchin, A possible link between critical and limiting flux for colloidal systems: consideration of critical deposit formation along a membrane, J. Membr. Sci. 228 (2004) 237-241.

DOI: 10.1016/j.memsci.2003.10.012

Google Scholar

[30] A.J. Bromley, R.G. Holdich, I.W. Cumming, Particulate fouling of surface microfilters with slotted and circular pore geometry, J. Membr. Sci. 196 (2002) 27-37.

DOI: 10.1016/s0376-7388(01)00573-7

Google Scholar

[31] V. Chen, Performance of partially permeable microfiltration membranes under low fouling conditions, J. Membr. Sci. 147 (1998) 265-278.

DOI: 10.1016/s0376-7388(98)00141-0

Google Scholar

[32] G. Belfort, R.H. Davis, A.L. Zydney, The behavior of suspensions and macromolecular solutions in crossflow microfiltration, J. Membr. Sci. 96 (1994) 1-58.

DOI: 10.1016/0376-7388(94)00119-7

Google Scholar

[33] I.H. Huisman, E. Vellenga, G. Trägårdh, C. Trägårdh, The influence of the membrane zeta potential on the critical flux for crossflow microfiltration of particle suspensions, J. Membr. Sci. 156 (1999) 153-158.

DOI: 10.1016/s0376-7388(98)00328-7

Google Scholar

[34] S. Ognier, C. Wisniewski, A. Grasmick, Membrane bioreactor fouling in sub-critical filtration conditions: a local critical flux concept, J. Membr. Sci. 229 (2004) 171-177.

DOI: 10.1016/j.memsci.2003.10.026

Google Scholar

[35] P. Buch, D.J. Mohan, A. Reddy, Preparation, characterization and chlorine stability of aromatic–cycloaliphatic polyamide thin film composite membranes, J. Membr. Sci. 309 (2008) 36-44.

DOI: 10.1016/j.memsci.2007.10.004

Google Scholar

[36] H. Strathmann, Economical evaluation of the membrane technology, Elsevier, London, (1989).

Google Scholar

[37] W. Lau, A. Ismail, N. Misdan, M. Kassim, A recent progress in thin film composite membrane: a review, Desalination 287 (2012) 190-199.

DOI: 10.1016/j.desal.2011.04.004

Google Scholar

[38] M. Mulder, Basic Principles of Membrane Technology, Springer Science & Business Media,(1996).

Google Scholar

[39] A. Rahimpour, S. Madaeni, S. Zereshki, Y. Mansourpanah, Preparation and characterization of modified nano-porous PVDF membrane with high antifouling property using UV photo-grafting, Appl. Surf. Sci. 255 (2009) 7455-7461.

DOI: 10.1016/j.apsusc.2009.04.021

Google Scholar

[40] S. Madaeni, A. Rahimpour, Effect of type of solvent and non‐solvents on morphology and performance of polysulfone and polyethersulfone ultrafiltration membranes for milk concentration, Polym. Adv. Technol. 16 (2005) 717-724.

DOI: 10.1002/pat.647

Google Scholar

[41] R. Boom, I. Wienk, T. Van den Boomgaard, C. Smolders, Microstructures in phase inversion membranes. Part 2. The role of a polymeric additive, J. Membr. Sci. 73 (1992) 277-292.

DOI: 10.1016/0376-7388(92)80135-7

Google Scholar

[42] A. Basile, F. Gallucci, Membranes for membrane reactors: preparation, optimization and selection, John Wiley & Sons,(2010).

Google Scholar

[43] A. Rahimpour, S.S. Madaeni, Y. Mansourpanah, Fabrication of polyethersulfone (PES) membranes with nano-porous surface using potassium perchlorate (KClO 4) as an additive in the casting solution, Desalination 258 (2010) 79-86.

DOI: 10.1016/j.desal.2010.03.042

Google Scholar

[44] Y.-L. Su, W. Cheng, C. Li, Z. Jiang, Preparation of antifouling ultrafiltration membranes with poly (ethylene glycol)-graft-polyacrylonitrile copolymers, J. Membr. Sci. 329 (2009) 246-252.

DOI: 10.1016/j.memsci.2009.01.002

Google Scholar

[45] R.B. Bird, W.E. Stewart, E.N. Lightfoot, Transport Phenomena John Wiley & Sons, New York, (1960).

Google Scholar

[46] C.J. Geankoplis, Transport processes and separation process principles:(includes unit operations), Prentice Hall, New Jersey, (2003).

Google Scholar

[47] H.K. Lonsdale, The growth of membrane and technology, J. Membr. Sci. 10 (1982) 81-181.

Google Scholar

[48] E.E. Meuleman, B. Bosch, M.H. Mulder, H. Strathmann, Modeling of liquid/liquid separation by pervaporation: toluene from water, AIChE journal 45 (1999) 2153-2160.

DOI: 10.1002/aic.690451014

Google Scholar

[49] K.W. Lawson, D.R. Lloyd, Membrane distillation: review, J. Membr. Sci. 124 (1997) 1-25.

Google Scholar

[50] K.S. Pitzer, L. Brewer, Thermodynamics (revision of Lewis and Randall), 2nd ed., McGraw-Hill, New York, (1961).

Google Scholar

[51] A. Katchalsky, P.F. Curran, Nonequilibrium thermodynamics in biophysics, Harvard University Press, Cambridge, (1967).

Google Scholar

[52] L. Onsager, Reciprocal relations in irreversible processes. II, Phys. Rev. 38 (1931) 2265.

DOI: 10.1103/physrev.38.2265

Google Scholar

[53] O. Kedem, A. Katchalsky, Thermodynamic analysis of the permeability of biological membranes to non-electrolytes, Biochem. Biophys. Acta 27 (1958) 229-246.

DOI: 10.1016/0006-3002(58)90330-5

Google Scholar

[54] M. Soltanieh, W.N. GILL', Review of reverse osmosis membranes and transport models, Chem. Eng. Commun. 12 (1981) 279-363.

DOI: 10.1080/00986448108910843

Google Scholar

[55] T.-S. Chung, L.Y. Jiang, Y. Li, S. Kulprathipanja, Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation, Prog. Polym. Sci. 32 (2007) 483-507.

DOI: 10.1016/j.progpolymsci.2007.01.008

Google Scholar

[56] N.H.H.A. Bakar, W.L. Tan, Natural composite membranes for water remediation: Toward a sustainable tomorrow, Renewable Energy and Sustainable Technologies for Building and Environmental Applications, Springer 2016, pp.25-49.

DOI: 10.1007/978-3-319-31840-0_2

Google Scholar

[57] B. Thaci, S. Gashi, N. Daci, M. Daci, A. Dylhasi, Effect of modified coal through chemical activation process on performance of heterogeneous reverse osmosis membranes, Environ. Protect. Eng. 41 (2015) 53-65.

DOI: 10.37190/epe150105

Google Scholar

[58] A. Zirehpour, A. Rahimpour, F. Seyedpour, M. Jahanshahi, Developing new CTA/CA-based membrane containing hydrophilic nanoparticles to enhance the forward osmosis desalination, Desalination 371 (2015) 46-57.

DOI: 10.1016/j.desal.2015.05.026

Google Scholar

[59] S.A. Kiran, G. Arthanareeswaran, Y.L. Thuyavan, A. Ismail, Influence of bentonite in polymer membranes for effective treatment of car wash effluent to protect the ecosystem, Ecotoxicol. Environ. Saf. 121 (2015) 186-192.

DOI: 10.1016/j.ecoenv.2015.04.001

Google Scholar

[60] N. Ghaemi, S.S. Madaeni, A. Alizadeh, P. Daraei, V. Vatanpour, M. Falsafi, Fabrication of cellulose acetate/sodium dodecyl sulfate nanofiltration membrane: characterization and performance in rejection of pesticides, Desalination 290 (2012) 99-106.

DOI: 10.1016/j.desal.2012.01.013

Google Scholar

[61] S. Velu, K. Rambabu, I. Muruganandam, Preparation, characterization and application of cellulose acetate-iron nanoparticles blend ultrafiltration membranes, J. Chem. Pharm. Res. 5 (2013) 1418-1428.

Google Scholar

[62] L.N. El-Din, A. El-Gendi, N. Ismail, K. Abed, A.I. Ahmed, Evaluation of cellulose acetate membrane with carbon nanotubes additives, J. Ind. Eng. Chem. 26 (2015) 259-264.

DOI: 10.1016/j.jiec.2014.11.037

Google Scholar

[63] A. Ahmad, S. Waheed, S.M. Khan, M. Shafiq, M. Farooq, K. Sanaullah, T. Jamil, Effect of silica on the properties of cellulose acetate/polyethylene glycol membranes for reverse osmosis, Desalination 355 (2015) 1-10.

DOI: 10.1016/j.desal.2014.10.004

Google Scholar

[64] G.R. Daisley, M.G. Dastgir, F.C. Ferreira, L.G. Peeva, A.G. Livingston, Application of thin film composite membranes to the membrane aromatic recovery system, J. Membr. Sci. 268 (2006) 20-36.

DOI: 10.1016/j.memsci.2005.05.024

Google Scholar

[65] P. Wang, T.-S. Chung, Recent advances in membrane distillation processes: Membrane development, configuration design and application exploring, J. Membr. Sci. 474 (2015) 39-56.

DOI: 10.1016/j.memsci.2014.09.016

Google Scholar

[66] S. Bonyadi, T.S. Chung, Flux enhancement in membrane distillation by fabrication of dual layer hydrophilic–hydrophobic hollow fiber membranes, J. Membr. Sci. 306 (2007) 134-146.

DOI: 10.1016/j.memsci.2007.08.034

Google Scholar

[67] N.L. Le, S.P. Nunes, Materials and membrane technologies for water and energy sustainability, Sustainable Materials and Technologies 7 (2016) 1-28.

DOI: 10.1016/j.susmat.2016.02.001

Google Scholar

[68] C. Feng, K. Khulbe, T. Matsuura, R. Gopal, S. Kaur, S. Ramakrishna, M. Khayet, Production of drinking water from saline water by air-gap membrane distillation using polyvinylidene fluoride nanofiber membrane, J. Membr. Sci. 311 (2008) 1-6.

DOI: 10.1016/j.memsci.2007.12.026

Google Scholar

[69] L. Dumée, K. Sears, J.r. Schü tz, N. Finn, M. Duke, S. Gray, Carbon nanotube based composite membranes for water desalination by membrane distillation, Desalin. Water. Treat. 17 (2010) 72-79.

DOI: 10.5004/dwt.2010.1701

Google Scholar

[70] K. Pourzare, Y. Mansourpanah, S. Farhadi, Advanced nanocomposite membranes for fuel cell applications: a comprehensive review, Biofuel Research Journal 3 (2016) 496-513.

DOI: 10.18331/brj2016.3.4.4

Google Scholar