Membrane Transport for Gas Separation

Article Preview

Abstract:

Gas separations through organic membranes have been investigated from last several years and presently it has been accepted for commercial applications. This chapter will focus on membrane based gas separation mechanism as well as its application. This chapter will cover ‘‘diffusivity controlled’’ and ‘‘solubility controlled’’ mechanism and choice of suitable polymers for different gas phase applications like acidic gas, C3+ hydrocarbon, nitrogen, water vapor and helium. Diffusivity controlled mechanism performs on free volume elements of the glassy polymers via hindrance of chain packing by functional groups and restricted by the permselectivity. Other mechanism performs on the basis of molecular structure with affinity towards the target molecule and follows enhanced solution-diffusion rout. Commercially available organic membrane materials for Carbon dioxide (CO2) removal are discussed along with process design. Membranes based separation process for heavy hydrocarbon recovery, nitrogen separation, helium separation and dehydration are less developed. This article will help us to focus on the future direction of those applications based on membrane technology. Keywords: Membrane, C3+ hydrocarbon, Diffusivity controlled, Solubility controlled, Selectivity, Permeability. *Corresponding author: E-mail address: c.bhatta@gmail.com (Chiranjib Bhattacharjee), Tel.: +91-9836402118.

You might also be interested in these eBooks

Info:

Periodical:

Diffusion Foundations (Volume 23)

Pages:

138-150

Citation:

Online since:

August 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W. J. Koros, R. P. Lively, Water and beyond: Expanding the spectrum of large scale energy efficient separation processes, AIChE J. 58 (2012) 2624-2633.

DOI: 10.1002/aic.13888

Google Scholar

[2] R. W. Baker, Future Directions of Membrane Gas Separation Technology, Ind. Eng. Chem. Res. 41 (2002) 1393-1411.

DOI: 10.1021/ie0108088

Google Scholar

[3] V. Stannett, The transport of gases in synthetic polymeric membranes-an historic perspective, J. Membr. Sci. 3 (1978) 97-115.

DOI: 10.1016/s0376-7388(00)83016-1

Google Scholar

[4] J. A. Nollet, Investigations on the causes for the ebullition of liquids, J. Membr. Sci. 100 (1995) 1-3.

Google Scholar

[5] S. S. Dhingra, Mixed gas transport study through polymeric membranes: A novel technique, PhD Dissertation. Virginia Polytechnic Institute and State University (1997).

Google Scholar

[6] W. Koros, C. Zimmerman, in: R. F. Brady (Ed.), Comprehensive Desk Reference of Polymer Characterization and Analysis (Chemistry), Oxford University, 2003, pp.680-699.

Google Scholar

[7] V. I. Bondar, B. D. Freeman, Y. P. Yampolskii, Sorption of Gases and Vapors in an Amorphous Glassy Perfluorodioxole Copolymer, Macromolecules. 32 (1999) 6163-6171.

DOI: 10.1021/ma9817222

Google Scholar

[8] W. J. Koros, A. H. Chan, D. R. Paul, Sorption and transport of various gases in polycarbonate, J. Membr. Sci. 2 (1977) 165-190.

DOI: 10.1016/s0376-7388(00)83242-1

Google Scholar

[9] J. S. Vrentas, C. M. Vrentas, Predictive methods for self-diffusion and mutual diffusion coefficients in polymer–solvent systems, Eur. Polymer J. 34 (1998) 797-803.

DOI: 10.1016/s0014-3057(97)00205-x

Google Scholar

[10] B.D. Freeman, Basis of Permeability/Selectivity Tradeoff Relations in Polymeric Gas Separation Membranes, Macromolecules. 32 (1999) 375-380.

DOI: 10.1021/ma9814548

Google Scholar

[11] L.M. Robeson, The upper bound revisited, J. Membr. Sci. 320 (2008) 390-400.

Google Scholar

[12] W. J. Koros, M. R. Coleman, D. R. B. Walker, Controlled Permeability Polymer Membranes, Annu. Rev. Mater. Sci. 22 (1992) 47-89.

DOI: 10.1146/annurev.ms.22.080192.000403

Google Scholar

[13] T. H. Kim, W. J. Koros, G. R. Husk, K. C. O'Brien, Relationship between gas separation properties and chemical structure in a series of aromatic polyimides, J. Membr. Sci. 37 (1988) 45-62.

DOI: 10.1016/s0376-7388(00)85068-1

Google Scholar

[14] J. H. Kim, S. B. Lee, S. Y. Kim, Incorporation effects of fluorinated side groups into polyimide membranes on their physical and gas permeation properties, J. Appl. Polym. Sci. 77 (2000) 2756-2767.

DOI: 10.1002/1097-4628(20000919)77:12<2756::aid-app240>3.0.co;2-c

Google Scholar

[15] M. D. Guiver, G. P. Robertson, Y. Dai, F. Bilodeau, Y. S. Kang, K. J. Lee, J. Y. Jho, J. Won, Structural characterization and gas-transport properties of brominated matrimid polyimide, J. Polym. Sci., Part A: Polym. Chem. 40 (2002) 4193-4204.

DOI: 10.1002/pola.10516

Google Scholar

[16] M. W. Hellums, W. J. Koros, J. C. Schmidhauser, Gas separation properties of spirobiindane polycarbonate, J. Membr. Sci. 67 (1992) 75-81.

DOI: 10.1016/0376-7388(92)87041-u

Google Scholar

[17] L. A. Pessan, W. J. Koros, J. C. Schmidhauser, W. D. Richards, Gas transport properties of polymers based on spirobiindane bisphenol, J. Polym. Sci. Part B Polym. Phys. 33 (1995) 487-494.

DOI: 10.1002/polb.1995.090330317

Google Scholar

[18] C.M. Zimmerman, W.J. Koros, Comparison of gas transport and sorption in the ladder polymer BBL and some semi-ladder polymers, Polymer. 40 (1999) 5655-5664.

DOI: 10.1016/s0032-3861(98)00777-0

Google Scholar

[19] P. M. Budd, B. S. Ghanem, S. Makhseed, N. B. McKeown, K. J. Msayib, C. E. Tattershall, Polymers of intrinsic microporosity (PIMs): robust, solution-processable, organic nanoporous materials, Chem. Commun. (2004) 230-231.

DOI: 10.1039/b311764b

Google Scholar

[20] N.B. McKeown, P.M. Budd, K.J. Msayib, B.S. Ghanem, H.J. Kingston, C.E. Tattershall, S. Makhseed, K.J. Reynolds, D. Fritsch, Polymers of Intrinsic Microporosity (PIMs): Bridging the Void between Microporous and Polymeric Materials, Chem. Eur. J. 11 (2005) 2610-2620.

DOI: 10.1002/chem.200400860

Google Scholar

[21] C.R. Mason, L. Maynard-Atem, K.W.J. Heard, B. Satilmis, P.M. Budd, K. Friess, M. Lanc, P. Bernardo, G. Clarizia, J.C. Jansen, Enhancement of CO2 Affinity in a Polymer of Intrinsic Microporosity by Amine Modification, Macromolecules. 47 (2014) 1021-1029.

DOI: 10.1021/ma401869p

Google Scholar

[22] J. D. Goddard, J. S. Schultz and S. R. Suchdeo, Facilitated transport via carrier-mediated diffusion in membranes: part II. mathematical aspects and analyses, AlChE J. 20(4) (1974) 625-645.

DOI: 10.1002/aic.690200402

Google Scholar

[23] J. D. Goddard, Further applications of carrier- mediated transport theory: a survey, Chem. Eng. Sci. 32 (1977) 795.

Google Scholar

[24] K. A. Smith, J. H. Meldon and C. K. Colton, An analysis of carrier-facilitated transport, AlChE J. 19(1) (1973) 102.

Google Scholar

[25] D. Yung and R. L. Probstein, Similarity considerations in facilitated transport, J. Phys. Chem. 77(18) (1973) 2201.

DOI: 10.1021/j100637a009

Google Scholar

[26] E. L. Cussler, R. Aris, and A. Bhown, On the limits of facilitated diffusion, J. Membr. Sci. 43 (1989) 149-164.

DOI: 10.1016/s0376-7388(00)85094-2

Google Scholar

[27] R. D. Noble, Analysis of facilitated transport in fixed site carrier membranes, J. Membr. Sci. 50 (1990) 207-214.

DOI: 10.1016/s0376-7388(00)80316-6

Google Scholar

[28] N. J. Kemp and R. D. Noble, Heat transfer effects in facilitated transport liquid membranes, Sep. Sci. Technol. 18 (1983) 1147-1165.

DOI: 10.1080/01496398308059922

Google Scholar

[29] T. Welton, Room-Temperature Ionic Liquids. Solvents for Synthesis and Catalysis, Chem. Rev. 99 (1999) 2071-2084.

DOI: 10.1021/cr980032t

Google Scholar

[30] J. E. Bara, D. L. Gin, R. D. Noble, Effect of Anion on Gas Separation Performance of Polymer−Room-Temperature Ionic Liquid Composite Membranes, Ind. Eng. Chem. Res. 47 (2008) 9919-9924.

DOI: 10.1021/ie801019x

Google Scholar

[31] D. Mecerreyes, Polymeric ionic liquids: Broadening the properties and applications of polyelectrolytes, Prog. Polym. Sci. 36 (2011) 1629-1648.

DOI: 10.1016/j.progpolymsci.2011.05.007

Google Scholar

[32] X. Lin, J. Chen, J. Xu, Improvement of oxygen/nitrogen permselectivity of poly[1-(trimethylsilyl)-1-propyne] membrane by plasma polymerization, J. Membr. Sci. 90 (1994) 81-89.

DOI: 10.1016/0376-7388(94)80035-9

Google Scholar

[33] X. Lin, X. Qiu, G. Zheng, J. Xu, Gas permeabilities of poly(trimethylsilylpropyne) membranes surface modified with CCI4 plasma, J. Appl. Polym. Sci. 58 (1995) 2137-2139.

DOI: 10.1002/app.1995.070581127

Google Scholar

[34] H. Matsuyama, K. Hirai, M. Teramoto, Selective permeation of carbon dioxide through plasma polymerized membrane from diisopropylamine, J. Membr. Sci. 92 (1994) 257-265.

DOI: 10.1016/0376-7388(94)00069-7

Google Scholar

[35] L. Shao, J. Samseth, M. B. Hagg, Effect of Plasma Treatment on the Gas Permeability of Poly(4 methyl-2-pentyne) Membranes, Plasma Process. Polym. 4 (2007) 823-831.

DOI: 10.1002/ppap.200600219

Google Scholar

[36] S.L. Liu, L. Shao, M.L. Chua, C.H. Lau, H. Wang, S. Quan, Recent progress in the design of advanced PEO-containing membranes for CO2 removal, Prog. Polym. Sci. 38 (2013) 1089-1120.

DOI: 10.1016/j.progpolymsci.2013.02.002

Google Scholar

[37] J. M. Duval, A. J. B. Kemperman, B. Folkers, M. H. V. Mulder, G. Desgrandchamps, C. A. Smolders, Preparation of zeolite filled glassy polymer membranes, J Appl Polym Sci. 54 (1994) 409-418.

DOI: 10.1002/app.1994.070540401

Google Scholar

[38] K. I. Lee, I. W. Shim, S. T. Hwang, The effects of transition metal complexes on the permeation of small gas molecules through cellulose acetate membranes, J Membr Sci. 60 (1991) 207-218.

DOI: 10.1016/s0376-7388(00)81535-5

Google Scholar

[39] M. Wessling, M. L. Lopez, H. Strathmann, Accelerated plasticization of thin-film composite membranes, Sep Purif Technol. 24 (2001) 223-233.

DOI: 10.1016/s1383-5866(01)00127-7

Google Scholar

[40] A. F. Ismail, W. Lorna, Penetrant-induced plasticization phenomenon in glassy polymers for gas separation membrane, Sep Purif Technol. 27 (2002) 173-94.

DOI: 10.1016/s1383-5866(01)00211-8

Google Scholar

[41] L. S. White, T. A. Blinka, H. A. Kloczewski, I. F. Wang, Properties of a polyimide gas separation membrane in natural gas streams, J Membr Sci. 103 (1995) 73-82.

DOI: 10.1016/0376-7388(94)00313-n

Google Scholar

[42] H. Y. Zhao, Y. M. Cao, X. L. Ding, M. Q. Zhou, J. H. Liu, Q. Yuan, Poly(ethylene oxide) induced cross-linking modification of Matrimid membranes for selective separation of CO2. J Membr Sci. 320 (2008) 179-184.

DOI: 10.1016/j.memsci.2008.03.070

Google Scholar

[43] A. M. W. Hillock, W. J. Koros, Cross-linkable polyimide membrane for natural gas purification and carbon dioxide plasticization reduction, Macromolecules. 40 (2007) 583-587.

DOI: 10.1021/ma062180o

Google Scholar

[44] J. D. Wind, D. R. Paul, W. J. Koros, Natural gas permeation in polyimide membranes. J Membr Sci. 228 (2004) 227-236.

DOI: 10.1016/j.memsci.2003.10.011

Google Scholar

[45] V. Abetz, T. Brinkmann, M. Dijkstra, K. Ebert, D. Fritsch, K. Ohlrogge, Developments in membrane research: from material via process design to industrial application, Adv Eng Mater. 8 (2006) 328-358.

DOI: 10.1002/adem.200600032

Google Scholar

[46] I. Pinnau, L. G. Toy, Transport of organic vapors through poly(1-trimethylsilyl-1-propyne). J Membr Sci. 116 (1996) 199-209.

DOI: 10.1016/0376-7388(96)00041-5

Google Scholar

[47] I. Pinnau, C. G. Casillas, A. Morisato, B. D. Freeman, Hydrocarbon/hydrogen mixed gas permeation in poly(1-trimethylsilyl-1-propyne) (PTMSP), poly(1-phenyl-1-propyne) (PPP), and PTMSP/PPP blends, J Polym Sci B: Polym Phys. 34 (1996) 2613-2621.

DOI: 10.1002/(sici)1099-0488(19961115)34:15<2613::aid-polb9>3.0.co;2-t

Google Scholar

[48] K. A. Lokhandwala, I. Pinnau, Z. He, K. D. Amo, A. R. DaCosta, J. G. Wijmans, R. W. Baker, Membrane separation of nitrogen from natural gas: a case study from membrane synthesis to commercial deployment, J Membr Sci. 346 (2010) 270-279.

DOI: 10.1016/j.memsci.2009.09.046

Google Scholar

[49] K. A. Lokhandwala, M. Ringer, J. G. Wijmans, R. W. Baker, Nitrogen removal from natural gas using membranes. National Energy Technology Laboratory, NG8-2; (1997).

Google Scholar

[50] J. P. Agrawal, S. Sourirajan, Helium separation by cellulose acetate membranes, J Appl Polym Sci. 13 (1969) 1065-1068.

DOI: 10.1002/app.1969.070130520

Google Scholar