p.90
p.104
p.138
p.151
p.173
p.187
p.201
p.213
p.222
Transport Phenomenon of Nanoparticles in Animals and Humans
Abstract:
Nanoparticles (NPs) are microscopic objects with at least one dimension less than 100 nm. These were first discovered by Michael Faraday in 1857 when he prepared gold nanoparticles and observed that nanostructured gold produced red color. This distinct feature of nanoparticles could be due to very small size. NPs are very small compared to the wavelengths of light, hence absorb light in the blue-green portion of the spectrum (~450 nm) and reflect the red light (~700 nm) thus yield a rich red color. NPs also possess very high surface to mass ratio that could be utilized in several application areas wherein a very high surface area is required. Nanoparticles witnessed tremendous growth in research and application areas especially in medicine in twentieth century after discovery of carbon nanotubes in 1991. Nanoparticles have been explored in medicine as targeted delivery carriers to deliver macromolecules such as proteins, enzymes, to the target organ up to cellular levels. Of late, these carriers have been employed to treat several tumors owing to its capacity to deliver chemotherapeutic agents to the tumor cells only thus improving efficacy and minimizing side effects of anticancer agents.
Info:
Periodical:
Pages:
173-186
Citation:
Online since:
August 2019
Authors:
Keywords:
Price:
Сopyright:
© 2019 Trans Tech Publications Ltd. All Rights Reserved
Citation:
* - Corresponding Author
[1] M.P. Monopoli, C. Åberg, A. Salvati, K.A. Dawson, Biomolecular coronas provide the biological identity of nanosized materials, Nat. Nanotechnol. 7 (2012) 779-786.
[2] S. Tenzer, D. Docter, J. Kuharev, A. Musyanovych, V. Fetz, R. Hecht, F. Schlenk, D. Fischer, K. Kiouptsi, C. Reinhardt, K. Landfester, Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology, Nat. Nanotechnol. 8 (2013) 772-781.
[3] H.H. Gustafson, D. Holt-Casper, D.W. Grainger, H. Ghandehari, Nanoparticle uptake: the phagocyte problem, Nano today. 10 (2015) 487-510.
[4] Y. Noguchi, J. Wu, R. Duncan, J. Strohalm, K. Ulbrich, T. Akaike, H. Maeda, Early phase tumor accumulation of macromolecules: a great difference in clearance rate between tumor and normal tissues, Cancer Sci. 89 (1998) 307-314.
[5] T. Boulikas, Clinical overview on Lipoplatin: a successful liposomal formulation of cisplatin, Expert Opin Investig Drugs. 18 (2009) 1197-1218.
[6] J. Wang, W. Wu, Y. Zhang, X. Wang, H. Qian, B. Liu, X. Jiang, The combined effects of size and surface chemistry on the accumulation of boronic acid-rich protein nanoparticles in tumors, Biomaterials. 35(2014) 866-878.
[7] A. Roy, M.J. Ernsting, E. Undzys, S.D. Li, A highly tumor-targeted nanoparticle of podophyllotoxin penetrated tumor core and regressed multidrug resistant tumors, Biomaterials. 52 (2015) 335-346.
[8] K. Iwai, H. Maeda, T. Konno, Use of oily contrast medium for selective drug targeting to tumor: enhanced therapeutic effect and X-ray image, Cancer Res. 44 (1984) 2115–2121.
[9] S.A. Skinner, PJM Tutton, PE O'Brien. Microvascular architecture of experimental colon tumors in the rat, Cancer Res. 50 (1990) 2411–2417.
[10] M.A. Konerding, A.J. Miodonski, A. Lametschwandtner, Microvascular corrosion casting in the study of tumor vascularity: a review, Scanning Microsc. 9 (1995) 1233–1244.
[11] H. Hashizume, P. Baluk, S. Morikawa, J.W. McLean, G. Thurston, S. Roberge, R.K. Jain, Openings between defective endothelial cells explain tumor vessel leakiness, Am J Pathol 2000; 1561: 1363–80.
[12] Y. Matsumura, M. Kimura, T. Yamamoto, H. Maeda, Involvement of the kinin-generating cascade and enhanced vascular permeability in tumor tissue, Jpn. J. Cancer Res. 79, (1988) 1327–1334.
[13] H. Maeda, Y. Matsumura, H. Kato, Purification and identification of [hydroxprolyl3] bradykinin in ascitic fluid from a patient with gastric cancer, J Biol Chem. 263 (1988) 16051–16054.
[14] Y. Matsumura, K. Maruo, M. Kimura, T. Yamamoto, T. Konno, H. Maeda, Kinin-generating cascade in advanced cancer patients and in vitro study, Jpn J Cancer Res. 82 (1991) 732–741.
[15] J. Wu, T. Akaike, K. Hayashida, Y. Miyamoto, T. Nakagawa, K. Miyakawa, W. Müller-Esterl, H. Maeda, Identification of bradykinin receptors in clinical cancer specimens and murine tumor tissues, Int J Cancer. 98 (2002) 29–35.
DOI: 10.1002/ijc.10142
[16] J. Wu, T. Akaike, H. Maeda, Modulation of enhanced vascular permeability in tumors by a bradykinin antagonist, a cyclooxygenase inhibitor, and a nitric oxide scavenger, Cancer Res. 58 (1998) 159–165.
[17] H. Maeda, Y. Noguchi, K. Sato, T. Akaike, enhanced vascular permeability in solid tumor is mediated by nitric oxide and inhibited by both new nitric oxide scavenger and nitric oxide synthase inhibitor, Jpn J Cancer Res. 85, (1994) 331–334.
[18] Seki T, Fang J, Maeda H. Enhanced delivery of macromolecular antitumor drugs to tumors by nitroglycerin application, Cancer Sci. 100 (2009) 2426–2430.
[19] D.R. Senger, S.J. Galli, A.M. Dvorak, C.A. Perruzzi, V.S. Harvey, H.F. Dvorak, Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid, Sci. 219, (1983) 983–985.
[20] H.F. Dvorak, J.A. Nagy, J.T. Dvorak, A.M. Dvorak, Identification and characterization of the blood vessels of solid tumors that are leaky to circulating macromolecules, Am. J. Pathol. 133, (1988) 95–109.
[21] J. Folkman, Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat. Med. 1, (1995) 27–31.
[22] B. Zhao, Y. Li, C. Buono, S.W. Waldo, N.L. Jones, M. Mori, H.S. Kruth, Constitutive receptor independent low density lipoprotein uptake and cholesterol accumulation by macrophages differentiated from human monocytes with macrophage-colony-stimulating factor (M-CSF), J Biol Chem. 281(2006) 15757-15762.
[23] A.J. Versluis, P.J. van Geel, H. Oppelaar, T.J. van Berkel, M.K. Bijsterbosch, Receptor-mediated uptake of low-density lipoprotein by B16 melanoma cells in vitro and in vivo in mice, Br J Cancer. 74(1996) 525-532.
DOI: 10.1038/bjc.1996.396
[24] H.S. Kruth, W. Huang, I. Ishii, W.Y. Zhang, Macrophage foam cell formation with native low density lipoprotein, J Biol Chem. 277(2002) 34573-34580.
[25] D.K. Spady, M. Huettinger, D.W. Bilheimer, J.M., Role of receptor-independent low density lipoprotein transport in the maintenance of tissue cholesterol balance in the normal and WHHL rabbit, J Lipid Res. 28(1987) 32-41.
[26] C. Buono, J.J. Anzinger, M. Amar, H.S. Kruth, Fluorescent pegylated nanoparticles demonstrate fluid-phase pinocytosis by macrophages in mouse atherosclerotic lesions, J Clin Invest. 119 (2009) 1373-1381.
DOI: 10.1172/jci35548
[27] J.J. Anzinger, X. Jin, C.S. Palmer, P. Dagur, M.K. Barthwal, H.S. Kruth, Measurement of aortic cell fluid-phase pinocytosis in vivo by flow cytometry, J Vasc Res. 54(2017) 195-199.
DOI: 10.1159/000475934
[28] J.A. Swanson, C. Watts, Macropinocytosis, Trends Cell Biol. 5(1995) 424-428.
[29] E.L. Racoosin, J.A. Swanson, Macrophage colony-stimulating factor (M-CSF) stimulates pinocytosis in bone marrow-derived macrophages, J Exp Med.170 (1989) 1635–1648.
[30] H.T. Haigler, J.A. McKanna, S. Cohen, Rapid stimulation of pinocytosis in human carcinoma cells A-431 by epidermal growth factor, J Cell Biol. 83 (1979) 82–90.
DOI: 10.1083/jcb.83.1.82
[31] J.A. Swanson, Phorbol esters stimulate macropinocytosis and solute flow through macrophage, J Cell Sci. 94 (1989) 135–142.
DOI: 10.1242/jcs.94.1.135
[32] C. Commisso, S.M. Davidson, R.G. Soydaner-Azeloglu, S.J. Parker, J.J. Kamphorst, S. Hackett, E. Grabocka, M. Nofal, J.A. Drebin, C.B. Thompson, J.D. Rabinowitz, C.M. Metallo, M.G. Vander Heiden, D. Bar-Sagi, Macropinocytosis of protein is an amino acid supply route in Ras-transformed cells. Nature. 497(2013) 633-637.
DOI: 10.1038/nature12138
[33] J.J. Kamphorst, M. Nofal, C. Commisso, S.R. Hackett, W. Lu, E. Grabocka, M.G. Vander Heiden, G. Miller, J.A. Drebin, D. Bar-Sagi, C.B. Thompson, J.D. Rabinowitz, Human pancreatic cancer tumors are nutrient poor and tumor cells actively scavenge extracellular protein, Cancer Res. 75(2015) 544-553.
[34] F. Kratz, Albumin as a drug carrier: design of prodrugs, drug conjugates and nanoparticles, J Control Release. 132(2008), 171-183.
[35] S. Biswas, N.S. Dodwadkar, P.P. Deshpande, S. Parab, V.P. Torchilin, Surface functionalization of doxorubicin-loaded liposomes with octa-arginine for enhanced anticancer activity, Eur J Pharm Biopharm. 84(2013) 517-525.
[36] Y. Liu, R. Ran, J. Chen, Q. Kuang, J. Tang, L. Mei, Q. Zhang, H. Gao, Z. Zhang, Q. He, Paclitaxel loaded liposomes decorated with a multifunctional tandem peptide for glioma targeting, Biomaterials. 35(2014) 4835-4847.
[37] R. Iglesias, P. Koria, Leveraging growth factor induced macropinocytosis for targeted treatment of lung cancer, Med. Oncol. 32(2015) 259.
[38] J. Bhattacharyya, J.J. Bellucci, I. Weitzhandler, J.R. McDaniel, I. Spasojevic, X. Li, C.C. Lin, J.T. Chi, A. Chilkoti, A paclitaxel-loaded recombinant polypeptide nanoparticle outperforms Abraxane in multiple murine cancer models, Nat. Commun. 6(2015) 7939.
DOI: 10.1038/ncomms8939
[39] M. Walsh, M. Tangney, M.J. O'Neill, J.O. Larkin, D.M. Soden, S.L. McKenna, R. Darcy, G.C. O'Sullivan, C.M. O'Driscoll, Evaluation of cellular uptake and gene transfer efficiency of pegylated poly-L-lysine compacted DNA: implications for cancer gene therapy, Mol Pharm. 3(2006) 644-653.
DOI: 10.1021/mp0600034
[40] J. Rappoport, Focusing on clathrin-mediated endocytosis, Biochem. J. 412 (2008) 415-423.
DOI: 10.1042/bj20080474
[41] C.M. Brown, N.O. Petersen, Free clathrin triskelions are required for the stability of clathrin-associated adaptor protein (AP-2) coated pit nucleation sites, Biochem Cell Biol. 77(1999) 439-448.
DOI: 10.1139/o99-053
[42] E. Ungewickell, D. Branton, Assembly units of clathrin coats, Nature. 289 (1981) 420-422.
DOI: 10.1038/289420a0
[43] R.G. Anderson, M.S. Brown, J.L. Goldstein, Role of the coated endocytic vesicle in the uptake of receptor-bound low density lipoprotein in human fibroblasts, Cell. 10(1977) 351-364.
[44] S.Q. Jing, T. Spencer, K. Miller, C. Hopkins, I.S. Trowbridge, Role of the human transferrin receptor cytoplasmic domain in endocytosis: localization of a specific signal sequence for internalization, J. Cell Biol. 110, 283–294 (1990).
[45] W. Li, C. Chen, C. Ye, T. Wei, Y. Zhao, F. Lao, Z. Chen, H. Meng, Y. Gao, H. Yuan, G. Xing, F. Zhao, Z. Chai, X. Zhang, F. Yang, D. Han, X. Tang, Y. Zhang, The translocation of fullerenic nanoparticles into lysosome via the pathway of clathrin-mediated endocytosis, Nanotechnol. 19(2008) 145102.
[46] R.B. Selvi, S. Chatterjee, D. Jagadeesan, P. Chaturbedy, B.S. Suma, Eswaramoorthy M, Kundu TK. ATP driven clathrin dependent entry of carbon nanospheres prefer cells with glucose receptors, J Nanobiotechnol. 10 (2012) 35.
[47] B.D. Chithrani, W.C. Chan, Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes, Nano lett. 7(2007):1542-1550.
DOI: 10.1021/nl070363y
[48] D. Suresh, A. Zambre, N. Chanda, T.J. Hoffman, C.J. Smith, J.D. Robertson, R. Kannan Bombesin peptide conjugated gold nanocages internalize via clathrin mediated endocytosis, Bioconjug Chem. 25(2014) 1565-1579.
DOI: 10.1021/bc500295s
[49] E. Allard-Vannier, K. Hervé-Aubert, K. Kaaki, T. Blondy, A. Shebanova, K.V. Shaitan, A.A. Ignatova, M.L. Saboungi, A.V. Feofanov, I. Chourpa, Folic acid-capped PEGylated magnetic nanoparticles enter cancer cells mostly via clathrin-dependent endocytosis, Biochim Biophys Acta. 1861(2017) 1578-1586.
[50] L.T.M. Phuc, A. Taniguchi, Epidermal Growth Factor Enhances Cellular Uptake of Polystyrene Nanoparticles by Clathrin-Mediated Endocytosis, Int J Mol Sci. 18 (2017) 1306.
[51] W.L. Langston Suen, Y. Chau, Size-dependent internalisation of folate-decorated nanoparticles via the pathways of clathrin and caveolae-mediated endocytosis in ARPE-19 cells, J Pharm Pharmacol. 66(2014) 564-573.
DOI: 10.1111/jphp.12134
[52] A. Chakraborty, N.R. Jana, Clathrin to Lipid Raft-Endocytosis via Controlled Surface Chemistry and Efficient Perinuclear Targeting of Nanoparticle, J Phys Chem Lett. 6(2015) 3688-3697.
[53] A. Anas, T. Okuda, N. Kawashima, K. Nakayama, T. Itoh, M. Ishikawa, V. Biju, Clathrin-mediated endocytosis of quantum dot-peptide conjugates in living cells, ACS Nano. 3(2009) 2419-2429.
DOI: 10.1021/nn900663r
[54] K.G. Rothberg, J.E. Heuser, W.C. Donzell, Y.S. Ying, J.R. Glenney, R.G. Anderson, Caveolin, a protein component of caveolae membrane coats, Cell. 68(1992) 673-682.
[55] G. Gabella, D. Blundell, Effect of stretch and contraction on caveolae of smooth muscle cells, Cell Tissue Res. 190(1978) 255-271.
DOI: 10.1007/bf00218174
[56] P. Oh, D.P. Mcintosh, J.E. Schnitzer, Dynamin at the neck of caveolae mediates their budding to form transport vesicles by GTP-driven fission from the plasma membrane of endothelium, J Cell Biol 141(1998) 101–114.
[57] J.R. Henley, E.W. Krueger, B.J. Oswald, M.A. Mcniven, Dynamin-mediated internalization of caveolae, J Cell Biol. 141(1998) 85–99.
DOI: 10.1083/jcb.141.1.85
[58] L. Pelkmans, A. Helenius, Endocytosis via caveolae, Traffic. 3(2002) 311-320.
[59] J. Rejman, M. Conese, D. Hoekstra, Gene transfer by means of lipo- and polyplexes: role of clathrin and caveolae-mediated endocytosis, J Liposome Res. 16(2006) 237-247.
[60] T. Lühmann, M. Rimann, A.G. Bittermann, H. Hall, Cellular uptake and intracellular pathways of PLL-g-PEG-DNA nanoparticles, Bioconjug Chem. 19(2008) 1907-1916.
DOI: 10.1021/bc800206r
[61] M. Ekkapongpisit, A. Giovia, C. Follo, G. Caputo, C. Isidoro Biocompatibility, endocytosis, and intracellular trafficking of mesoporous silica and polystyrene nanoparticles in ovarian cancer cells: effects of size and surface charge groups, Int J Nanomed. 7 (2012) 4147-4158.
DOI: 10.2147/ijn.s33803
[62] C. Morelli, P. Maris, D. Sisci, E. Perrotta, E. Brunelli, I. Perrotta, M.L. Panno, A. Tagarelli, C. Versace, M.F. Casula, F. Testa, S. Andò, J.B. Nagy, L. Pasqua PEG-templated mesoporous silica nanoparticles exclusively target cancer cells, Nanoscale. 3(2011) 3198-3207.
DOI: 10.1039/c1nr10253b
[63] G. Sahay, J.O. Kim, A.V. Kabanov, T.K. Bronich, The exploitation of differential endocytic pathways in normal and tumor cells in the selective targeting of nanoparticulate chemotherapeutic agents, Biomaterials. 31(2010) 923-933.
[64] W. He, M.J. Bennett, L. Luistro, D. Carvajal, T. Nevins, M. Smith, G. Tyagi, J. Cai, X. Wei, T.A Lin, D.C. Heimbrook, K. Packman, J.F. Boylan, Discovery of siRNA lipid nanoparticles to transfect suspension leukemia cells and provide in vivo delivery capability, Mol Ther. 22(2014) 359-370.
DOI: 10.1038/mt.2013.210
[65] L. Su, L., F. Ge, S.L. Zhang, Y. Zhang, B.X. Zhao, J. Zhao, J.Y. Miao, The effect of novel magnetic nanoparticles on vascular endothelial cell function in vitro an in vivo, J Hazard Mater. 235-236 (2012) 316-325.
[66] L. Alili, M. Sack, C. von Montfort, S. Giri, S. Das, K.S. Carroll, K. Zanger, S. Seal, P. Brenneisen, Downregulation of tumor growth and invasion by redox-active nanoparticles, Antioxid Redox Signal. 19(2013) 765-778.
[67] K. Rattanapinyopituk, A. Shimada, T. Morita, M. Sakurai, A. Asano, T. Hasegawa, K. Inoue, H. Takano, Demonstration of the clathrin- and caveolin-mediated endocytosis at the maternal-fetal barrier in mouse placenta after intravenous administration of gold nanoparticles, J Vet Med Sci. 76(2014) 377-387.
DOI: 10.1292/jvms.13-0512
[68] M. Naota, A., T. Morita, Y. Yamamoto, K. Inoue, H. Takano, Caveolae-mediated endocytosis of intratracheally instilled gold colloid nanoparticles at the air-blood barrier in mice, Toxicol Pathol. 41(2013) 487-496.
[69] J. Wang, L. Li, L. Wu, B. Sun, Y. Du, J. Sun, Y. Wang, Q. Fu, P. Zhang, Z. He, Development of novel self-assembled ES-PLGA hybrid nanoparticles for improving oral absorption of doxorubicin hydrochloride by P-gp inhibition: In vitro and in vivo evaluation, Eur J Pharm Sci. 99 (2017) 185-192.
[70] M. Wang, Y. Zhang, J. Feng, T. Gu, Q. Dong, X. Yang, Y. Sun, Y. Wu, Y. Chen, W. Kong, Preparation, characterization, and in vitro and in vivo investigation of chitosan-coated poly (d,l-lactide-co-glycolide) nanoparticles for intestinal delivery of exendin-4, Int J Nanomedicine. 8 (2013) 1141-1154.
DOI: 10.2147/ijn.s41457
[71] A. Aderem, D.M. Underhill, Mechanisms of phagocytosis in macrophages, Annu Rev Immunol. 17 (1999) 593-623.
[72] E.J. Brown, Complement receptors and phagocytosis, Curr Opin Immunol. 3(1991) 76-82.
[73] D.K. O'Brien, S.B. Melville, Multiple effects on Clostridium perfringens binding, uptake and trafficking to lysosomes by inhibitors of macrophage phagocytosis receptors, 149 (2003) 1377–1386.
[74] L. Kobzik, Lung macrophage uptake of unopsonized environmental particulates, Role of scavenger-type receptors, J Immunol. 155(1995) 367-376.
[75] M. Koval, K. Preiter, C. Adles, P.D. Stahl, T.H. Steinberg, Size of IgG-opsonized particles determines macrophage response during internalization, Exp Cell Res. 242(1998) 265-273.
[76] J.A. Champion, S. Mitragotri, Role of target geometry in phagocytosis, Proc Natl Acad Sci U S A. 103(2006) 4930-4934.
[77] S.Y. Lin, W.H. Hsu, J.M. Lo, H.C. Tsai, G.H. Hsiue, Novel geometry type of nanocarriers mitigated the phagocytosis for drug delivery. J Control Release, 154(2011) 84-92.
[78] R. Mathaes, G. Winter, A. Besheer, J. Engert, Influence of particle geometry and PEGylation on phagocytosis of particulate carriers, Int J Pharm. 465(2014) 159-164.
[79] Z. Krpetić, F. Porta, E. Caneva, V. Dal Santo, G. Scarì, Phagocytosis of biocompatible gold nanoparticles, Langmuir. 26(2010) 14799-14805.
DOI: 10.1021/la102758f
[80] W.S. Cho, M. Cho, J. Jeong, M. Choi, H.Y. Cho, B.S. Han, S.H. Kim, H.O. Kim, Y.T. Lim, B.H. Chung, J. Jeong, Acute toxicity and pharmacokinetics of 13 nm-sized PEG-coated gold nanoparticles, Toxicol Appl Pharmacol. 236(2009) 16-24.
[81] S. Hirn, M. Semmler-Behnke, C. Schleh, A. Wenk, J. Lipka, M. Schäffler, S. Takenaka, W. Möller, G. Schmid, U. Simon, W.G. Kreyling, Particle size-dependent and surface charge-dependent biodistribution of gold nanoparticles after intravenous administration, Eur J Pharm Biopharm. 77(2011) 407-416.
[82] S. Bancos, D.L. Stevens, K.M. Tyner, Effect of silica and gold nanoparticles onmacrophage proliferation, activation markers, cytokine production, and phagocytosis in vitro, Int J Nanomedicine. 10 (2014) 183-206.
DOI: 10.2147/ijn.s72580
[83] B.A. Katsnelson, L.I. Privalova, M.P. Sutunkova, V.B. Gurvich, N.V. Loginova, I.A. Minigalieva, E.P. Kireyeva, V.Y. Shur, E.V. Shishkina, Y.B. Beikin, O.H. Makeyev, I.E. Valamina, Some inferences from in vivo experiments with metal and metal oxide nanoparticles: the pulmonary phagocytosis response, subchronic systemic toxicity and genotoxicity, regulatory proposals, searching for bioprotectors (a self-overview), Int J Nanomedicine, 10 (2015) 3013-3029.
DOI: 10.2147/ijn.s80843
[84] E. Mutzke, E. Chomyshyn, K.C. Nguyen, M. Blahoianu, A.F. Tayabali, Phagocytosis-coupled flow cytometry for detection and size discrimination of anionic polystyrene particles, Anal Biochem. 483 (2015) 40-46.
[85] L. Leclerc, D. Boudard, J. Pourchez, V. Forest, O. Sabido, V. Bin, S. Palle, P. Grosseau, D. Bernache, M. Cottier, Quantification of microsized fluorescent particles phagocytosis to a better knowledge of toxicity mechanisms, Inhal Toxicol. 22(2010) 1091-1100.
[86] A. Nchimi, O. Defawe, D. Brisbois, T.K. Broussaud, J.O. Defraigne, P. Magotteaux, B. Massart, J.M. Serfaty, X. Houard, J.B. Michel, N. Sakalihasan, MR imaging of iron phagocytosis in intraluminal thrombi of abdominal aortic aneurysms in humans, Radiology. 254(2010) 973-981.
[87] E. Blanco, H. Shen, M. Ferrari, Principles of nanoparticle design for overcoming biological barriers to drug delivery, Nat Biotechnol. 33(2015) 941-951.
DOI: 10.1038/nbt.3330
[88] S. Zhang, J. Li, G. Lykotrafitis, G. Bao, S. Suresh, Size-Dependent Endocytosis of Nanoparticles, Adv Mater. 21 (2009) 419-424.
[89] X.Y. Sun, Q.Z. Gan, J.M. Ouyang. Size-dependent cellular uptake mechanism and cytotoxicity toward calcium oxalate on Vero cells, Sci Rep. 7 (2017) 41949.
DOI: 10.1038/srep41949
[90] G. Sahay, D.Y. Alakhova, A.V. Kabanov, Endocytosis of nanomedicines, J. Controlled Release 145 (2010) 182-195.
[91] Y. Geng, P. Dalhaimer, S. Cai, R. Tsai, M. Tewari, T. Minko, D.E. Discher, shape effects of filaments versus spherical particles in flow and drug delivery, Nat Nanotechnol. 2(2007) 249-255.
[92] K. Nambara, K. Niikura, H. Mitomo, T. Ninomiya, C. Takeuchi, J. Wei, Y. Matsuo, K. Ijiro, Reverse Size Dependences of the Cellular Uptake of Triangular and Spherical Gold Nanoparticles, Langmuir. 32(2016) 12559-12567.
[93] Y. Jiang, S. Huo, T. Mizuhara, R. Das, Y.W. Lee, S. Hou, D.F. Moyano, B. Duncan, X.J. Liang, V.M. Rotello, The Interplay of Size and Surface Functionality on the Cellular Uptake of Sub-10 nm Gold Nanoparticles, ACS Nano. 9(2015) 9986-9993.
[94] A.E. Nel, L. Mädler, D. Velegol, T. Xia, E.M. Hoek, P. Somasundaran, F. Klaessig, V. Castranova, M. Thompson, Understanding biophysicochemical interactions at the nano-bio interface, Nat Mater. 8(2009) 543-557.
DOI: 10.1038/nmat2442
[95] X. Xie, J. Liao, X. Shao, Q. Li, Y. Lin, The Effect of shape on Cellular Uptake of Gold Nanoparticles in the forms of Stars, Rods, and Triangles, Sci Rep. 7 (2017) 3827.
[96] F. Alexis, E. Pridgen, L.K. Molnar, O.C. Farokhzad, Factors affecting the clearance and biodistribution of polymeric nanoparticles, Mol Pharm. 5(2008) 505-515.
DOI: 10.1021/mp800051m
[97] Y. Yamamoto, Y. Nagasaki, Y. Kato, Y. Sugiyama, K. Kataoka, Long-circulating poly(ethylene glycol)-poly(d,l-lactide) block copolymer micelles with modulated surface charge, J Control Release. 77 (2001) 27–38.
[98] L. Kou, J. Sun, Y. Zhai, Z. He, The endocytosis and intracellular fate of nanomedicines: Implication for rational design. Asian Journal of Pharmaceutical Sciences, 8(2013) 1-10.
[99] Y. Kaneda, Y. Tsutsumi, Y. Yoshioka, H. Kamada, Y. Yamamoto, H. Kodaira, S.I. Tsunoda, T. Okamoto, Y. Mukai, H. Shibata, S. Nakagawa, The use of PVP as a polymeric carrier to improve the plasma half-life of drugs, Biomaterials. 25(2004) 3259-3266.
[100] E.L. Riché, B.W. Erickson, M.J. Cho, Novel long-circulating liposomes containing peptide library-lipid conjugates: synthesis and in vivo behavior, Journal of drug targeting, 12(2004) 355-361.
[101] A. Abuchowski, T. Van Es, N.C. Palczuk, F.F. Davis, Alteration of immunological properties of bovine serum albumin by covalent attachment of polyethylene glycol, Journal of Biolog. Chem. 252(1977) 3578-3581.
[102] A.L. Klibanov, K. Maruyama, V.P. Torchilin, L. Huang, Amphipathic polyethyleneglycols effectively prolong the circulation time of liposomes. FEBS letters. 268(1990) 235-237.
[103] R. Gref, M. Lück, P. Quellec, M. Marchand, E. Dellacherie, S. Harnisch, T. Blunk, RH Müller, Stealth,corona-core nanoparticles surface modified by polyethylene glycol (PEG): influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption, Colloids and Surfaces B: Biointerfaces. 2000 Oct 31;18(3):301-13.
[104] T.J. Daou, L. Li, P. Reiss, V. Josserand, I. Texier, Effect of poly (ethylene glycol) length on the in vivo behavior of coated quantum dots, Langmuir. 25(2009) 3040-3044.
DOI: 10.1021/la8035083
[105] D.P. Lankveld, R.G. Rayavarapu, P. Krystek, A.G. Oomen, H.W. Verharen, T.G. Van Leeuwen, W.H. De Jong, S. Manohar, Blood clearance and tissue distribution of PEGylated and non-PEGylated gold nanorods after intravenous administration in rats, Nanomedicine. 6(2011) 339-349.
DOI: 10.2217/nnm.10.122
[106] E.K. Larsen, T. Nielsen, T. Wittenborn, L.M. Rydtoft, A.R. Lokanathan, L. Hansen, L. Østergaard, P. Kingshott, K.A. Howard, Besenbacher F, Nielsen NC. Accumulation of magnetic iron oxide nanoparticles coated with variably sized polyethylene glycol in murine tumors, Nanoscale. 4(2012) 2352-2361.
DOI: 10.1039/c2nr11554a
[107] S.W. Sun, X.Y. Zu, Q.H. Tuo, L.X. Chen, X.Y. Lei, K. Li, C.K. Tang, D.F Liao, Caveolae ancaveolin-1 mediate endocytosis and transcytosis of oxidized low density lipoprotein in endothelial cells, Acta Pharmacol Sin. 31(2010) 1336-1342.
DOI: 10.1038/aps.2010.87
[108] Y.K. Lee, S.W. Kim, J.Y. Park, W.C. Kang, Y.J. Kang, D. Khang, Suppression of human arthritis synovial fibroblasts inflammation using dexamethasone-carbon nanotubes via increasing caveolin-dependent endocytosis and recovering mitochondrial membrane potential, Int J Nanomedicine. 12 (2017) 5761-5779.
DOI: 10.2147/ijn.s142122
[109] K.S. Song, P.E. Scherer, Z. Tang, T. Okamoto, S. Li, M. Chafel, C. Chu, D.S. Kohtz, M.P. Lisanti, Expression of caveolin-3 in skeletal, cardiac, and smooth muscle cells. Caveolin-3 is a component of the sarcolemma and co-fractionates with dystrophin and dystrophin-associated glycoproteins, J Biol Chem. 271(1996) 15160-15165.
[110] D.J. Hernández-Deviez, M.T. Howes, S.H. Laval, K. Bushby, J.F. Hancock, R.G. Parton. Caveolin regulates endocytosis of the muscle repair protein, dysferlin, J Biol Chem. 283(2008) 6476-6488.
[111] K. Greish, Enhanced permeability and retention of macromolecular drugs in solid tumors: A royal gate for targeted anticancer nanomedicines. J. Drug Targeting 15 (2007), 457–464.
[112] H. Maeda, J. Fang, T. Inuzuka, Y. Kitamoto, Vascular permeability enhancement in solid tumor: various factors, mechanisms involved and its implications, Int Immunopharmacol. 3 (2003) 319–328.
[113] B.F. Jordan, P. Misson, R. Demeure, C, Beghein N, Gallez B. Changes in tumor oxygenation/perfusion induced by the NO donor, isosorbide dinitrate, in comparison with carbogen: monitoring by EPR and MRI, Int J Radiat Oncol Biol Phys 48 (2000) 565–570.
[114] H. Yasuda, M. Yamaya, K. Nakayama, Randomized phase II trial comparing nitroglycerin plus vinorelbine and cisplatin with vinorelbine and cisplatin alone in previously untreated stage IIIB/IV non-small cell lung cancer. J Clin Oncol 2006; 24: 688–94.
[115] H. Yasuda, K. Nakayama, M. Watanabe, T. Sasaki, S. Ebihara, A. Kanda, M. Asada, D. Inoue, T. Suzuki, T. Okazaki, H. Takahashi, M. Yoshida, T. Kaneta, K. Ishizawa, S. Yamanda, N. Tomita, M Yamasaki, A Kikuchi, H. Kubo, H. Sasaki, Nitroglycerin treatment may increase response to docetaxel and carboplatin regimen via inhibitions of hypoxia-inducible factor-1 pathway and P-glycoprotein in patients with lung adenocarcinoma, Clin Cancer Res 12 (2006) 6748–6757.
[116] C.J. Li, Y. Miyamoto, Y. Kojima, H. Maeda, Augmentation of tumor delivery of macromolecular drugs with reduced bone marrow delivery by elevating blood pressure, Br J Cancer. 67 (1993) 975–980.
DOI: 10.1038/bjc.1993.179
[117] K. Hori, M. Suzuki, S. Tanda, S. Saito, M. Shinozaki, Q.H. Zhang, Fluctuations in tumor blood flow under normotension and the effect of angiotensin II-induced hypertension, Jpn J Cancer Res. 82(1991) 1309-1316.
[118] M. Suzuki, K. Hori, I. Abe, S. Saito, H. Sato, A new approach to cancer chemotherapy: selective enhancement of tumor blood flow with angiotensin II, J Natl Cancer Inst. 67(1981) 663-669.
[119] J. Fang, L. Liao, H. Yin, H. Nakamura, T. Shin, H. Maeda, enhanced bacterial tumor delivery by modulating the EPR effect, and therapeutic potential of Lactobacillus casei, J Pharm Sci 103 (2014) 3235–3243.
DOI: 10.1002/jps.24083
[120] A. Nagamitsu, K. Greish, H. Maeda, elevating blood pressure as a strategy to increase tumor targeted delivery of macromolecular drug SMANCS: cases of advanced solid tumors. Jpn. J. Clin. Oncol. 39, (2009) 756–766.
DOI: 10.1093/jjco/hyp074