Transport Phenomenon of Nanoparticles in Animals and Humans

Article Preview

Abstract:

Nanoparticles (NPs) are microscopic objects with at least one dimension less than 100 nm. These were first discovered by Michael Faraday in 1857 when he prepared gold nanoparticles and observed that nanostructured gold produced red color. This distinct feature of nanoparticles could be due to very small size. NPs are very small compared to the wavelengths of light, hence absorb light in the blue-green portion of the spectrum (~450 nm) and reflect the red light (~700 nm) thus yield a rich red color. NPs also possess very high surface to mass ratio that could be utilized in several application areas wherein a very high surface area is required. Nanoparticles witnessed tremendous growth in research and application areas especially in medicine in twentieth century after discovery of carbon nanotubes in 1991. Nanoparticles have been explored in medicine as targeted delivery carriers to deliver macromolecules such as proteins, enzymes, to the target organ up to cellular levels. Of late, these carriers have been employed to treat several tumors owing to its capacity to deliver chemotherapeutic agents to the tumor cells only thus improving efficacy and minimizing side effects of anticancer agents.

You might also be interested in these eBooks

Info:

Periodical:

Diffusion Foundations (Volume 23)

Pages:

173-186

Citation:

Online since:

August 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M.P. Monopoli, C. Åberg, A. Salvati, K.A. Dawson, Biomolecular coronas provide the biological identity of nanosized materials, Nat. Nanotechnol. 7 (2012) 779-786.

DOI: 10.1038/nnano.2012.207

Google Scholar

[2] S. Tenzer, D. Docter, J. Kuharev, A. Musyanovych, V. Fetz, R. Hecht, F. Schlenk, D. Fischer, K. Kiouptsi, C. Reinhardt, K. Landfester, Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology, Nat. Nanotechnol. 8 (2013) 772-781.

DOI: 10.1038/nnano.2013.181

Google Scholar

[3] H.H. Gustafson, D. Holt-Casper, D.W. Grainger, H. Ghandehari, Nanoparticle uptake: the phagocyte problem, Nano today. 10 (2015) 487-510.

DOI: 10.1016/j.nantod.2015.06.006

Google Scholar

[4] Y. Noguchi, J. Wu, R. Duncan, J. Strohalm, K. Ulbrich, T. Akaike, H. Maeda, Early phase tumor accumulation of macromolecules: a great difference in clearance rate between tumor and normal tissues, Cancer Sci. 89 (1998) 307-314.

DOI: 10.1111/j.1349-7006.1998.tb00563.x

Google Scholar

[5] T. Boulikas, Clinical overview on Lipoplatin: a successful liposomal formulation of cisplatin, Expert Opin Investig Drugs. 18 (2009) 1197-1218.

DOI: 10.1517/13543780903114168

Google Scholar

[6] J. Wang, W. Wu, Y. Zhang, X. Wang, H. Qian, B. Liu, X. Jiang, The combined effects of size and surface chemistry on the accumulation of boronic acid-rich protein nanoparticles in tumors, Biomaterials. 35(2014) 866-878.

DOI: 10.1016/j.biomaterials.2013.10.028

Google Scholar

[7] A. Roy, M.J. Ernsting, E. Undzys, S.D. Li, A highly tumor-targeted nanoparticle of podophyllotoxin penetrated tumor core and regressed multidrug resistant tumors, Biomaterials. 52 (2015) 335-346.

DOI: 10.1016/j.biomaterials.2015.02.041

Google Scholar

[8] K. Iwai, H. Maeda, T. Konno, Use of oily contrast medium for selective drug targeting to tumor: enhanced therapeutic effect and X-ray image, Cancer Res. 44 (1984) 2115–2121.

Google Scholar

[9] S.A. Skinner, PJM Tutton, PE O'Brien. Microvascular architecture of experimental colon tumors in the rat, Cancer Res. 50 (1990) 2411–2417.

Google Scholar

[10] M.A. Konerding, A.J. Miodonski, A. Lametschwandtner, Microvascular corrosion casting in the study of tumor vascularity: a review, Scanning Microsc. 9 (1995) 1233–1244.

Google Scholar

[11] H. Hashizume, P. Baluk, S. Morikawa, J.W. McLean, G. Thurston, S. Roberge, R.K. Jain, Openings between defective endothelial cells explain tumor vessel leakiness, Am J Pathol 2000; 1561: 1363–80.

DOI: 10.1016/s0002-9440(10)65006-7

Google Scholar

[12] Y. Matsumura, M. Kimura, T. Yamamoto, H. Maeda, Involvement of the kinin-generating cascade and enhanced vascular permeability in tumor tissue, Jpn. J. Cancer Res. 79, (1988) 1327–1334.

DOI: 10.1111/j.1349-7006.1988.tb01563.x

Google Scholar

[13] H. Maeda, Y. Matsumura, H. Kato, Purification and identification of [hydroxprolyl3] bradykinin in ascitic fluid from a patient with gastric cancer, J Biol Chem. 263 (1988) 16051–16054.

DOI: 10.1016/s0021-9258(18)37555-0

Google Scholar

[14] Y. Matsumura, K. Maruo, M. Kimura, T. Yamamoto, T. Konno, H. Maeda, Kinin-generating cascade in advanced cancer patients and in vitro study, Jpn J Cancer Res. 82 (1991) 732–741.

DOI: 10.1111/j.1349-7006.1991.tb01910.x

Google Scholar

[15] J. Wu, T. Akaike, K. Hayashida, Y. Miyamoto, T. Nakagawa, K. Miyakawa, W. Müller-Esterl, H. Maeda, Identification of bradykinin receptors in clinical cancer specimens and murine tumor tissues, Int J Cancer. 98 (2002) 29–35.

DOI: 10.1002/ijc.10142

Google Scholar

[16] J. Wu, T. Akaike, H. Maeda, Modulation of enhanced vascular permeability in tumors by a bradykinin antagonist, a cyclooxygenase inhibitor, and a nitric oxide scavenger, Cancer Res. 58 (1998) 159–165.

Google Scholar

[17] H. Maeda, Y. Noguchi, K. Sato, T. Akaike, enhanced vascular permeability in solid tumor is mediated by nitric oxide and inhibited by both new nitric oxide scavenger and nitric oxide synthase inhibitor, Jpn J Cancer Res. 85, (1994) 331–334.

DOI: 10.1111/j.1349-7006.1994.tb02362.x

Google Scholar

[18] Seki T, Fang J, Maeda H. Enhanced delivery of macromolecular antitumor drugs to tumors by nitroglycerin application, Cancer Sci. 100 (2009) 2426–2430.

DOI: 10.1111/j.1349-7006.2009.01323.x

Google Scholar

[19] D.R. Senger, S.J. Galli, A.M. Dvorak, C.A. Perruzzi, V.S. Harvey, H.F. Dvorak, Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid, Sci. 219, (1983) 983–985.

DOI: 10.1126/science.6823562

Google Scholar

[20] H.F. Dvorak, J.A. Nagy, J.T. Dvorak, A.M. Dvorak, Identification and characterization of the blood vessels of solid tumors that are leaky to circulating macromolecules, Am. J. Pathol. 133, (1988) 95–109.

Google Scholar

[21] J. Folkman, Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat. Med. 1, (1995) 27–31.

Google Scholar

[22] B. Zhao, Y. Li, C. Buono, S.W. Waldo, N.L. Jones, M. Mori, H.S. Kruth, Constitutive receptor independent low density lipoprotein uptake and cholesterol accumulation by macrophages differentiated from human monocytes with macrophage-colony-stimulating factor (M-CSF), J Biol Chem. 281(2006) 15757-15762.

DOI: 10.1074/jbc.m510714200

Google Scholar

[23] A.J. Versluis, P.J. van Geel, H. Oppelaar, T.J. van Berkel, M.K. Bijsterbosch, Receptor-mediated uptake of low-density lipoprotein by B16 melanoma cells in vitro and in vivo in mice, Br J Cancer. 74(1996) 525-532.

DOI: 10.1038/bjc.1996.396

Google Scholar

[24] H.S. Kruth, W. Huang, I. Ishii, W.Y. Zhang, Macrophage foam cell formation with native low density lipoprotein, J Biol Chem. 277(2002) 34573-34580.

DOI: 10.1074/jbc.m205059200

Google Scholar

[25] D.K. Spady, M. Huettinger, D.W. Bilheimer, J.M., Role of receptor-independent low density lipoprotein transport in the maintenance of tissue cholesterol balance in the normal and WHHL rabbit, J Lipid Res. 28(1987) 32-41.

DOI: 10.1016/s0022-2275(20)38731-9

Google Scholar

[26] C. Buono, J.J. Anzinger, M. Amar, H.S. Kruth, Fluorescent pegylated nanoparticles demonstrate fluid-phase pinocytosis by macrophages in mouse atherosclerotic lesions, J Clin Invest. 119 (2009) 1373-1381.

DOI: 10.1172/jci35548

Google Scholar

[27] J.J. Anzinger, X. Jin, C.S. Palmer, P. Dagur, M.K. Barthwal, H.S. Kruth, Measurement of aortic cell fluid-phase pinocytosis in vivo by flow cytometry, J Vasc Res. 54(2017) 195-199.

DOI: 10.1159/000475934

Google Scholar

[28] J.A. Swanson, C. Watts, Macropinocytosis, Trends Cell Biol. 5(1995) 424-428.

Google Scholar

[29] E.L. Racoosin, J.A. Swanson, Macrophage colony-stimulating factor (M-CSF) stimulates pinocytosis in bone marrow-derived macrophages, J Exp Med.170 (1989) 1635–1648.

DOI: 10.1084/jem.170.5.1635

Google Scholar

[30] H.T. Haigler, J.A. McKanna, S. Cohen, Rapid stimulation of pinocytosis in human carcinoma cells A-431 by epidermal growth factor, J Cell Biol. 83 (1979) 82–90.

DOI: 10.1083/jcb.83.1.82

Google Scholar

[31] J.A. Swanson, Phorbol esters stimulate macropinocytosis and solute flow through macrophage, J Cell Sci. 94 (1989) 135–142.

DOI: 10.1242/jcs.94.1.135

Google Scholar

[32] C. Commisso, S.M. Davidson, R.G. Soydaner-Azeloglu, S.J. Parker, J.J. Kamphorst, S. Hackett, E. Grabocka, M. Nofal, J.A. Drebin, C.B. Thompson, J.D. Rabinowitz, C.M. Metallo, M.G. Vander Heiden, D. Bar-Sagi, Macropinocytosis of protein is an amino acid supply route in Ras-transformed cells. Nature. 497(2013) 633-637.

DOI: 10.1038/nature12138

Google Scholar

[33] J.J. Kamphorst, M. Nofal, C. Commisso, S.R. Hackett, W. Lu, E. Grabocka, M.G. Vander Heiden, G. Miller, J.A. Drebin, D. Bar-Sagi, C.B. Thompson, J.D. Rabinowitz, Human pancreatic cancer tumors are nutrient poor and tumor cells actively scavenge extracellular protein, Cancer Res. 75(2015) 544-553.

DOI: 10.1158/0008-5472.can-14-2211

Google Scholar

[34] F. Kratz, Albumin as a drug carrier: design of prodrugs, drug conjugates and nanoparticles, J Control Release. 132(2008), 171-183.

DOI: 10.1016/j.jconrel.2008.05.010

Google Scholar

[35] S. Biswas, N.S. Dodwadkar, P.P. Deshpande, S. Parab, V.P. Torchilin, Surface functionalization of doxorubicin-loaded liposomes with octa-arginine for enhanced anticancer activity, Eur J Pharm Biopharm. 84(2013) 517-525.

DOI: 10.1016/j.ejpb.2012.12.021

Google Scholar

[36] Y. Liu, R. Ran, J. Chen, Q. Kuang, J. Tang, L. Mei, Q. Zhang, H. Gao, Z. Zhang, Q. He, Paclitaxel loaded liposomes decorated with a multifunctional tandem peptide for glioma targeting, Biomaterials. 35(2014) 4835-4847.

DOI: 10.1016/j.biomaterials.2014.02.031

Google Scholar

[37] R. Iglesias, P. Koria, Leveraging growth factor induced macropinocytosis for targeted treatment of lung cancer, Med. Oncol. 32(2015) 259.

DOI: 10.1007/s12032-015-0708-6

Google Scholar

[38] J. Bhattacharyya, J.J. Bellucci, I. Weitzhandler, J.R. McDaniel, I. Spasojevic, X. Li, C.C. Lin, J.T. Chi, A. Chilkoti, A paclitaxel-loaded recombinant polypeptide nanoparticle outperforms Abraxane in multiple murine cancer models, Nat. Commun. 6(2015) 7939.

DOI: 10.1038/ncomms8939

Google Scholar

[39] M. Walsh, M. Tangney, M.J. O'Neill, J.O. Larkin, D.M. Soden, S.L. McKenna, R. Darcy, G.C. O'Sullivan, C.M. O'Driscoll, Evaluation of cellular uptake and gene transfer efficiency of pegylated poly-L-lysine compacted DNA: implications for cancer gene therapy, Mol Pharm. 3(2006) 644-653.

DOI: 10.1021/mp0600034

Google Scholar

[40] J. Rappoport, Focusing on clathrin-mediated endocytosis, Biochem. J. 412 (2008) 415-423.

DOI: 10.1042/bj20080474

Google Scholar

[41] C.M. Brown, N.O. Petersen, Free clathrin triskelions are required for the stability of clathrin-associated adaptor protein (AP-2) coated pit nucleation sites, Biochem Cell Biol. 77(1999) 439-448.

DOI: 10.1139/o99-053

Google Scholar

[42] E. Ungewickell, D. Branton, Assembly units of clathrin coats, Nature. 289 (1981) 420-422.

DOI: 10.1038/289420a0

Google Scholar

[43] R.G. Anderson, M.S. Brown, J.L. Goldstein, Role of the coated endocytic vesicle in the uptake of receptor-bound low density lipoprotein in human fibroblasts, Cell. 10(1977) 351-364.

DOI: 10.1016/0092-8674(77)90022-8

Google Scholar

[44] S.Q. Jing, T. Spencer, K. Miller, C. Hopkins, I.S. Trowbridge, Role of the human transferrin receptor cytoplasmic domain in endocytosis: localization of a specific signal sequence for internalization, J. Cell Biol. 110, 283–294 (1990).

DOI: 10.1083/jcb.110.2.283

Google Scholar

[45] W. Li, C. Chen, C. Ye, T. Wei, Y. Zhao, F. Lao, Z. Chen, H. Meng, Y. Gao, H. Yuan, G. Xing, F. Zhao, Z. Chai, X. Zhang, F. Yang, D. Han, X. Tang, Y. Zhang, The translocation of fullerenic nanoparticles into lysosome via the pathway of clathrin-mediated endocytosis, Nanotechnol. 19(2008) 145102.

DOI: 10.1088/0957-4484/19/14/145102

Google Scholar

[46] R.B. Selvi, S. Chatterjee, D. Jagadeesan, P. Chaturbedy, B.S. Suma, Eswaramoorthy M, Kundu TK. ATP driven clathrin dependent entry of carbon nanospheres prefer cells with glucose receptors, J Nanobiotechnol. 10 (2012) 35.

DOI: 10.1186/1477-3155-10-35

Google Scholar

[47] B.D. Chithrani, W.C. Chan, Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes, Nano lett. 7(2007):1542-1550.

DOI: 10.1021/nl070363y

Google Scholar

[48] D. Suresh, A. Zambre, N. Chanda, T.J. Hoffman, C.J. Smith, J.D. Robertson, R. Kannan Bombesin peptide conjugated gold nanocages internalize via clathrin mediated endocytosis, Bioconjug Chem. 25(2014) 1565-1579.

DOI: 10.1021/bc500295s

Google Scholar

[49] E. Allard-Vannier, K. Hervé-Aubert, K. Kaaki, T. Blondy, A. Shebanova, K.V. Shaitan, A.A. Ignatova, M.L. Saboungi, A.V. Feofanov, I. Chourpa, Folic acid-capped PEGylated magnetic nanoparticles enter cancer cells mostly via clathrin-dependent endocytosis, Biochim Biophys Acta. 1861(2017) 1578-1586.

DOI: 10.1016/j.bbagen.2016.11.045

Google Scholar

[50] L.T.M. Phuc, A. Taniguchi, Epidermal Growth Factor Enhances Cellular Uptake of Polystyrene Nanoparticles by Clathrin-Mediated Endocytosis, Int J Mol Sci. 18 (2017) 1306.

DOI: 10.20944/preprints201706.0011.v1

Google Scholar

[51] W.L. Langston Suen, Y. Chau, Size-dependent internalisation of folate-decorated nanoparticles via the pathways of clathrin and caveolae-mediated endocytosis in ARPE-19 cells, J Pharm Pharmacol. 66(2014) 564-573.

DOI: 10.1111/jphp.12134

Google Scholar

[52] A. Chakraborty, N.R. Jana, Clathrin to Lipid Raft-Endocytosis via Controlled Surface Chemistry and Efficient Perinuclear Targeting of Nanoparticle, J Phys Chem Lett. 6(2015) 3688-3697.

DOI: 10.1021/acs.jpclett.5b01739

Google Scholar

[53] A. Anas, T. Okuda, N. Kawashima, K. Nakayama, T. Itoh, M. Ishikawa, V. Biju, Clathrin-mediated endocytosis of quantum dot-peptide conjugates in living cells, ACS Nano. 3(2009) 2419-2429.

DOI: 10.1021/nn900663r

Google Scholar

[54] K.G. Rothberg, J.E. Heuser, W.C. Donzell, Y.S. Ying, J.R. Glenney, R.G. Anderson, Caveolin, a protein component of caveolae membrane coats, Cell. 68(1992) 673-682.

DOI: 10.1016/0092-8674(92)90143-z

Google Scholar

[55] G. Gabella, D. Blundell, Effect of stretch and contraction on caveolae of smooth muscle cells, Cell Tissue Res. 190(1978) 255-271.

DOI: 10.1007/bf00218174

Google Scholar

[56] P. Oh, D.P. Mcintosh, J.E. Schnitzer, Dynamin at the neck of caveolae mediates their budding to form transport vesicles by GTP-driven fission from the plasma membrane of endothelium, J Cell Biol 141(1998) 101–114.

DOI: 10.1083/jcb.141.1.101

Google Scholar

[57] J.R. Henley, E.W. Krueger, B.J.  Oswald, M.A. Mcniven, Dynamin-mediated internalization of caveolae, J Cell Biol. 141(1998) 85–99.

DOI: 10.1083/jcb.141.1.85

Google Scholar

[58] L. Pelkmans, A. Helenius, Endocytosis via caveolae, Traffic. 3(2002) 311-320.

DOI: 10.1034/j.1600-0854.2002.30501.x

Google Scholar

[59] J. Rejman, M. Conese, D. Hoekstra, Gene transfer by means of lipo- and polyplexes: role of clathrin and caveolae-mediated endocytosis, J Liposome Res. 16(2006) 237-247.

DOI: 10.1080/08982100600848819

Google Scholar

[60] T. Lühmann, M. Rimann, A.G. Bittermann, H. Hall, Cellular uptake and intracellular pathways of PLL-g-PEG-DNA nanoparticles, Bioconjug Chem. 19(2008) 1907-1916.

DOI: 10.1021/bc800206r

Google Scholar

[61] M. Ekkapongpisit, A. Giovia, C. Follo, G. Caputo, C. Isidoro Biocompatibility, endocytosis, and intracellular trafficking of mesoporous silica and polystyrene nanoparticles in ovarian cancer cells: effects of size and surface charge groups, Int J Nanomed. 7 (2012) 4147-4158.

DOI: 10.2147/ijn.s33803

Google Scholar

[62] C. Morelli, P. Maris, D. Sisci, E. Perrotta, E. Brunelli, I. Perrotta, M.L. Panno, A. Tagarelli, C. Versace, M.F. Casula, F. Testa, S. Andò, J.B. Nagy, L. Pasqua PEG-templated mesoporous silica nanoparticles exclusively target cancer cells, Nanoscale. 3(2011) 3198-3207.

DOI: 10.1039/c1nr10253b

Google Scholar

[63] G. Sahay, J.O. Kim, A.V. Kabanov, T.K. Bronich, The exploitation of differential endocytic pathways in normal and tumor cells in the selective targeting of nanoparticulate chemotherapeutic agents, Biomaterials. 31(2010) 923-933.

DOI: 10.1016/j.biomaterials.2009.09.101

Google Scholar

[64] W. He, M.J. Bennett, L. Luistro, D. Carvajal, T. Nevins, M. Smith, G. Tyagi, J. Cai, X. Wei, T.A Lin, D.C. Heimbrook, K. Packman, J.F. Boylan, Discovery of siRNA lipid nanoparticles to transfect suspension leukemia cells and provide in vivo delivery capability, Mol Ther. 22(2014) 359-370.

DOI: 10.1038/mt.2013.210

Google Scholar

[65] L. Su, L., F. Ge, S.L. Zhang, Y. Zhang, B.X. Zhao, J. Zhao, J.Y. Miao, The effect of novel magnetic nanoparticles on vascular endothelial cell function in vitro an in vivo, J Hazard Mater. 235-236 (2012) 316-325.

DOI: 10.1016/j.jhazmat.2012.08.003

Google Scholar

[66] L. Alili, M. Sack, C. von Montfort, S. Giri, S. Das, K.S. Carroll, K. Zanger, S. Seal, P. Brenneisen, Downregulation of tumor growth and invasion by redox-active nanoparticles, Antioxid Redox Signal. 19(2013) 765-778.

DOI: 10.1089/ars.2012.4831

Google Scholar

[67] K. Rattanapinyopituk, A. Shimada, T. Morita, M. Sakurai, A. Asano, T. Hasegawa, K. Inoue, H. Takano, Demonstration of the clathrin- and caveolin-mediated endocytosis at the maternal-fetal barrier in mouse placenta after intravenous administration of gold nanoparticles, J Vet Med Sci. 76(2014) 377-387.

DOI: 10.1292/jvms.13-0512

Google Scholar

[68] M. Naota, A., T. Morita, Y. Yamamoto, K. Inoue, H. Takano, Caveolae-mediated endocytosis of intratracheally instilled gold colloid nanoparticles at the air-blood barrier in mice, Toxicol Pathol. 41(2013) 487-496.

DOI: 10.1177/0192623312457271

Google Scholar

[69] J. Wang, L. Li, L. Wu, B. Sun, Y. Du, J. Sun, Y. Wang, Q. Fu, P. Zhang, Z. He, Development of novel self-assembled ES-PLGA hybrid nanoparticles for improving oral absorption of doxorubicin hydrochloride by P-gp inhibition: In vitro and in vivo evaluation, Eur J Pharm Sci. 99 (2017) 185-192.

DOI: 10.1016/j.ejps.2016.12.014

Google Scholar

[70] M. Wang, Y. Zhang, J. Feng, T. Gu, Q. Dong, X. Yang, Y. Sun, Y. Wu, Y. Chen, W. Kong, Preparation, characterization, and in vitro and in vivo investigation of chitosan-coated poly (d,l-lactide-co-glycolide) nanoparticles for intestinal delivery of exendin-4, Int J Nanomedicine. 8 (2013) 1141-1154.

DOI: 10.2147/ijn.s41457

Google Scholar

[71] A. Aderem, D.M. Underhill, Mechanisms of phagocytosis in macrophages, Annu Rev Immunol. 17 (1999) 593-623.

DOI: 10.1146/annurev.immunol.17.1.593

Google Scholar

[72] E.J. Brown, Complement receptors and phagocytosis, Curr Opin Immunol. 3(1991) 76-82.

Google Scholar

[73] D.K. O'Brien, S.B. Melville, Multiple effects on Clostridium perfringens binding, uptake and trafficking to lysosomes by inhibitors of macrophage phagocytosis receptors, 149 (2003) 1377–1386.

DOI: 10.1099/mic.0.26268-0

Google Scholar

[74] L. Kobzik, Lung macrophage uptake of unopsonized environmental particulates, Role of scavenger-type receptors, J Immunol. 155(1995) 367-376.

DOI: 10.4049/jimmunol.155.1.367

Google Scholar

[75] M. Koval, K. Preiter, C. Adles, P.D. Stahl, T.H. Steinberg, Size of IgG-opsonized particles determines macrophage response during internalization, Exp Cell Res. 242(1998) 265-273.

DOI: 10.1006/excr.1998.4110

Google Scholar

[76] J.A. Champion, S. Mitragotri, Role of target geometry in phagocytosis, Proc Natl Acad Sci U S A. 103(2006) 4930-4934.

DOI: 10.1073/pnas.0600997103

Google Scholar

[77] S.Y. Lin, W.H. Hsu, J.M. Lo, H.C. Tsai, G.H. Hsiue, Novel geometry type of nanocarriers mitigated the phagocytosis for drug delivery. J Control Release, 154(2011) 84-92.

DOI: 10.1016/j.jconrel.2011.04.023

Google Scholar

[78] R. Mathaes, G. Winter, A. Besheer, J. Engert, Influence of particle geometry and PEGylation on phagocytosis of particulate carriers, Int J Pharm. 465(2014) 159-164.

DOI: 10.1016/j.ijpharm.2014.02.037

Google Scholar

[79] Z. Krpetić, F. Porta, E. Caneva, V. Dal Santo, G. Scarì, Phagocytosis of biocompatible gold nanoparticles, Langmuir. 26(2010) 14799-14805.

DOI: 10.1021/la102758f

Google Scholar

[80] W.S. Cho, M. Cho, J. Jeong, M. Choi, H.Y. Cho, B.S. Han, S.H. Kim, H.O. Kim, Y.T. Lim, B.H. Chung, J. Jeong, Acute toxicity and pharmacokinetics of 13 nm-sized PEG-coated gold nanoparticles, Toxicol Appl Pharmacol. 236(2009) 16-24.

DOI: 10.1016/j.taap.2008.12.023

Google Scholar

[81] S. Hirn, M. Semmler-Behnke, C. Schleh, A. Wenk, J. Lipka, M. Schäffler, S. Takenaka, W. Möller, G. Schmid, U. Simon, W.G. Kreyling, Particle size-dependent and surface charge-dependent biodistribution of gold nanoparticles after intravenous administration, Eur J Pharm Biopharm. 77(2011) 407-416.

DOI: 10.1016/j.ejpb.2010.12.029

Google Scholar

[82] S. Bancos, D.L. Stevens, K.M. Tyner, Effect of silica and gold nanoparticles onmacrophage proliferation, activation markers, cytokine production, and phagocytosis in vitro, Int J Nanomedicine. 10 (2014) 183-206.

DOI: 10.2147/ijn.s72580

Google Scholar

[83] B.A. Katsnelson, L.I. Privalova, M.P. Sutunkova, V.B. Gurvich, N.V. Loginova, I.A. Minigalieva, E.P. Kireyeva, V.Y. Shur, E.V. Shishkina, Y.B. Beikin, O.H. Makeyev, I.E. Valamina, Some inferences from in vivo experiments with metal and metal oxide nanoparticles: the pulmonary phagocytosis response, subchronic systemic toxicity and genotoxicity, regulatory proposals, searching for bioprotectors (a self-overview), Int J Nanomedicine, 10 (2015) 3013-3029.

DOI: 10.2147/ijn.s80843

Google Scholar

[84] E. Mutzke, E. Chomyshyn, K.C. Nguyen, M. Blahoianu, A.F. Tayabali, Phagocytosis-coupled flow cytometry for detection and size discrimination of anionic polystyrene particles, Anal Biochem. 483 (2015) 40-46.

DOI: 10.1016/j.ab.2015.04.034

Google Scholar

[85] L. Leclerc, D. Boudard, J. Pourchez, V. Forest, O. Sabido, V. Bin, S. Palle, P. Grosseau, D. Bernache, M. Cottier, Quantification of microsized fluorescent particles phagocytosis to a better knowledge of toxicity mechanisms, Inhal Toxicol. 22(2010) 1091-1100.

DOI: 10.3109/08958378.2010.522781

Google Scholar

[86] A. Nchimi, O. Defawe, D. Brisbois, T.K. Broussaud, J.O. Defraigne, P. Magotteaux, B. Massart, J.M. Serfaty, X. Houard, J.B. Michel, N. Sakalihasan, MR imaging of iron phagocytosis in intraluminal thrombi of abdominal aortic aneurysms in humans, Radiology. 254(2010) 973-981.

DOI: 10.1148/radiol.09090657

Google Scholar

[87] E. Blanco, H. Shen, M. Ferrari, Principles of nanoparticle design for overcoming biological barriers to drug delivery, Nat Biotechnol. 33(2015) 941-951.

DOI: 10.1038/nbt.3330

Google Scholar

[88] S. Zhang, J. Li, G. Lykotrafitis, G. Bao, S. Suresh, Size-Dependent Endocytosis of Nanoparticles, Adv Mater. 21 (2009) 419-424.

DOI: 10.1002/adma.200801393

Google Scholar

[89] X.Y. Sun, Q.Z. Gan, J.M. Ouyang. Size-dependent cellular uptake mechanism and cytotoxicity toward calcium oxalate on Vero cells, Sci Rep. 7 (2017) 41949.

DOI: 10.1038/srep41949

Google Scholar

[90] G. Sahay, D.Y. Alakhova, A.V. Kabanov, Endocytosis of nanomedicines, J. Controlled Release 145 (2010) 182-195.

DOI: 10.1016/j.jconrel.2010.01.036

Google Scholar

[91] Y. Geng, P. Dalhaimer, S. Cai, R. Tsai, M. Tewari, T. Minko, D.E. Discher, shape effects of filaments versus spherical particles in flow and drug delivery, Nat Nanotechnol. 2(2007) 249-255.

DOI: 10.1038/nnano.2007.70

Google Scholar

[92] K. Nambara, K. Niikura, H. Mitomo, T. Ninomiya, C. Takeuchi, J. Wei, Y. Matsuo, K. Ijiro, Reverse Size Dependences of the Cellular Uptake of Triangular and Spherical Gold Nanoparticles, Langmuir. 32(2016) 12559-12567.

DOI: 10.1021/acs.langmuir.6b02064

Google Scholar

[93] Y. Jiang, S. Huo, T. Mizuhara, R. Das, Y.W. Lee, S. Hou, D.F. Moyano, B. Duncan, X.J. Liang, V.M. Rotello, The Interplay of Size and Surface Functionality on the Cellular Uptake of Sub-10 nm Gold Nanoparticles, ACS Nano. 9(2015) 9986-9993.

DOI: 10.1021/acsnano.5b03521

Google Scholar

[94] A.E. Nel, L. Mädler, D. Velegol, T. Xia, E.M. Hoek, P. Somasundaran, F. Klaessig, V. Castranova, M. Thompson, Understanding biophysicochemical interactions at the nano-bio interface, Nat Mater. 8(2009) 543-557.

DOI: 10.1038/nmat2442

Google Scholar

[95] X. Xie, J. Liao, X. Shao, Q. Li, Y. Lin, The Effect of shape on Cellular Uptake of Gold Nanoparticles in the forms of Stars, Rods, and Triangles, Sci Rep. 7 (2017) 3827.

DOI: 10.1038/s41598-017-04229-z

Google Scholar

[96] F. Alexis, E. Pridgen, L.K. Molnar, O.C. Farokhzad, Factors affecting the clearance and biodistribution of polymeric nanoparticles, Mol Pharm. 5(2008) 505-515.

DOI: 10.1021/mp800051m

Google Scholar

[97] Y. Yamamoto, Y. Nagasaki, Y. Kato, Y. Sugiyama, K. Kataoka, Long-circulating poly(ethylene glycol)-poly(d,l-lactide) block copolymer micelles with modulated surface charge, J Control Release. 77 (2001) 27–38.

DOI: 10.1016/s0168-3659(01)00451-5

Google Scholar

[98] L. Kou, J. Sun, Y. Zhai, Z. He, The endocytosis and intracellular fate of nanomedicines: Implication for rational design. Asian Journal of Pharmaceutical Sciences, 8(2013) 1-10.

DOI: 10.1016/j.ajps.2013.07.001

Google Scholar

[99] Y. Kaneda, Y. Tsutsumi, Y. Yoshioka, H. Kamada, Y. Yamamoto, H. Kodaira, S.I. Tsunoda, T. Okamoto, Y. Mukai, H. Shibata, S. Nakagawa, The use of PVP as a polymeric carrier to improve the plasma half-life of drugs, Biomaterials. 25(2004) 3259-3266.

DOI: 10.1016/j.biomaterials.2003.10.003

Google Scholar

[100] E.L. Riché, B.W. Erickson, M.J. Cho, Novel long-circulating liposomes containing peptide library-lipid conjugates: synthesis and in vivo behavior, Journal of drug targeting, 12(2004) 355-361.

DOI: 10.1080/10611860412331285279

Google Scholar

[101] A. Abuchowski, T. Van Es, N.C. Palczuk, F.F. Davis, Alteration of immunological properties of bovine serum albumin by covalent attachment of polyethylene glycol, Journal of Biolog. Chem. 252(1977) 3578-3581.

DOI: 10.1016/s0021-9258(17)40291-2

Google Scholar

[102] A.L. Klibanov, K. Maruyama, V.P. Torchilin, L. Huang, Amphipathic polyethyleneglycols effectively prolong the circulation time of liposomes. FEBS letters. 268(1990) 235-237.

DOI: 10.1016/0014-5793(90)81016-h

Google Scholar

[103] R. Gref, M. Lück, P. Quellec, M. Marchand, E. Dellacherie, S. Harnisch, T. Blunk, RH Müller, Stealth,corona-core nanoparticles surface modified by polyethylene glycol (PEG): influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption, Colloids and Surfaces B: Biointerfaces. 2000 Oct 31;18(3):301-13.

DOI: 10.1016/s0927-7765(99)00156-3

Google Scholar

[104] T.J. Daou, L. Li, P. Reiss, V. Josserand, I. Texier, Effect of poly (ethylene glycol) length on the in vivo behavior of coated quantum dots, Langmuir. 25(2009) 3040-3044.

DOI: 10.1021/la8035083

Google Scholar

[105] D.P. Lankveld, R.G. Rayavarapu, P. Krystek, A.G. Oomen, H.W. Verharen, T.G. Van Leeuwen, W.H. De Jong, S. Manohar, Blood clearance and tissue distribution of PEGylated and non-PEGylated gold nanorods after intravenous administration in rats, Nanomedicine. 6(2011) 339-349.

DOI: 10.2217/nnm.10.122

Google Scholar

[106] E.K. Larsen, T. Nielsen, T. Wittenborn, L.M. Rydtoft, A.R. Lokanathan, L. Hansen, L. Østergaard, P. Kingshott, K.A. Howard, Besenbacher F, Nielsen NC. Accumulation of magnetic iron oxide nanoparticles coated with variably sized polyethylene glycol in murine tumors, Nanoscale. 4(2012) 2352-2361.

DOI: 10.1039/c2nr11554a

Google Scholar

[107] S.W. Sun, X.Y. Zu, Q.H. Tuo, L.X. Chen, X.Y. Lei, K. Li, C.K. Tang, D.F Liao, Caveolae ancaveolin-1 mediate endocytosis and transcytosis of oxidized low density lipoprotein in endothelial cells, Acta Pharmacol Sin. 31(2010) 1336-1342.

DOI: 10.1038/aps.2010.87

Google Scholar

[108] Y.K. Lee, S.W. Kim, J.Y. Park, W.C. Kang, Y.J. Kang, D. Khang, Suppression of human arthritis synovial fibroblasts inflammation using dexamethasone-carbon nanotubes via increasing caveolin-dependent endocytosis and recovering mitochondrial membrane potential, Int J Nanomedicine. 12 (2017) 5761-5779.

DOI: 10.2147/ijn.s142122

Google Scholar

[109] K.S. Song, P.E. Scherer, Z. Tang, T. Okamoto, S. Li, M. Chafel, C. Chu, D.S. Kohtz, M.P. Lisanti, Expression of caveolin-3 in skeletal, cardiac, and smooth muscle cells. Caveolin-3 is a component of the sarcolemma and co-fractionates with dystrophin and dystrophin-associated glycoproteins, J Biol Chem. 271(1996) 15160-15165.

DOI: 10.1074/jbc.271.25.15160

Google Scholar

[110] D.J. Hernández-Deviez, M.T. Howes, S.H. Laval, K. Bushby, J.F. Hancock, R.G. Parton. Caveolin regulates endocytosis of the muscle repair protein, dysferlin, J Biol Chem. 283(2008) 6476-6488.

DOI: 10.1074/jbc.m708776200

Google Scholar

[111] K. Greish, Enhanced permeability and retention of macromolecular drugs in solid tumors: A royal gate for targeted anticancer nanomedicines. J. Drug Targeting 15 (2007), 457–464.

DOI: 10.1080/10611860701539584

Google Scholar

[112] H. Maeda, J. Fang, T. Inuzuka, Y. Kitamoto, Vascular permeability enhancement in solid tumor: various factors, mechanisms involved and its implications, Int Immunopharmacol. 3 (2003) 319–328.

DOI: 10.1016/s1567-5769(02)00271-0

Google Scholar

[113] B.F. Jordan, P. Misson, R. Demeure, C, Beghein N, Gallez B. Changes in tumor oxygenation/perfusion induced by the NO donor, isosorbide dinitrate, in comparison with carbogen: monitoring by EPR and MRI, Int J Radiat Oncol Biol Phys 48 (2000) 565–570.

DOI: 10.1016/s0360-3016(00)00694-5

Google Scholar

[114] H. Yasuda, M. Yamaya, K. Nakayama, Randomized phase II trial comparing nitroglycerin plus vinorelbine and cisplatin with vinorelbine and cisplatin alone in previously untreated stage IIIB/IV non-small cell lung cancer. J Clin Oncol 2006; 24: 688–94.

DOI: 10.1200/jco.2005.04.0436

Google Scholar

[115] H. Yasuda, K. Nakayama, M. Watanabe, T. Sasaki, S. Ebihara, A. Kanda, M. Asada, D. Inoue, T. Suzuki, T. Okazaki, H. Takahashi, M. Yoshida, T. Kaneta, K. Ishizawa, S. Yamanda, N. Tomita, M Yamasaki, A Kikuchi, H. Kubo, H. Sasaki, Nitroglycerin treatment may increase response to docetaxel and carboplatin regimen via inhibitions of hypoxia-inducible factor-1 pathway and P-glycoprotein in patients with lung adenocarcinoma, Clin Cancer Res 12 (2006) 6748–6757.

DOI: 10.1016/j.niox.2007.09.069

Google Scholar

[116] C.J. Li, Y. Miyamoto, Y. Kojima, H. Maeda, Augmentation of tumor delivery of macromolecular drugs with reduced bone marrow delivery by elevating blood pressure, Br J Cancer. 67 (1993) 975–980.

DOI: 10.1038/bjc.1993.179

Google Scholar

[117] K. Hori, M. Suzuki, S. Tanda, S. Saito, M. Shinozaki, Q.H. Zhang, Fluctuations in tumor blood flow under normotension and the effect of angiotensin II-induced hypertension, Jpn J Cancer Res. 82(1991) 1309-1316.

DOI: 10.1111/j.1349-7006.1991.tb01797.x

Google Scholar

[118] M. Suzuki, K. Hori, I. Abe, S. Saito, H. Sato, A new approach to cancer chemotherapy: selective enhancement of tumor blood flow with angiotensin II, J Natl Cancer Inst. 67(1981) 663-669.

Google Scholar

[119] J. Fang, L. Liao, H. Yin, H. Nakamura, T. Shin, H. Maeda, enhanced bacterial tumor delivery by modulating the EPR effect, and therapeutic potential of Lactobacillus casei, J Pharm Sci 103 (2014) 3235–3243.

DOI: 10.1002/jps.24083

Google Scholar

[120] A. Nagamitsu, K. Greish, H. Maeda, elevating blood pressure as a strategy to increase tumor targeted delivery of macromolecular drug SMANCS: cases of advanced solid tumors. Jpn. J. Clin. Oncol. 39, (2009) 756–766.

DOI: 10.1093/jjco/hyp074

Google Scholar