Sorption and Diffusion Properties of Wood/Plastic Composites

Article Preview

Abstract:

The area of sorption and diffusion behaviour of wood/plastic composites has gained considerable attention during the last decade owing to the variety of applications it offers. When it comes to polymers filled with wood particles there are essentially two major limiting factors that controls the final products end user applications; 1) diffusion and 2) sorption/solvent uptake of (especially moisture) the product, since these two processes lead to property degradation in the composite materials. The properties and end use application of a given product can be predicted thorough the knowledge of the parameters like diffusion, sorption and permeation coefficients. Transport (sorption, diffusion & permeation) properties of wood plastic composites (WPC’s) are now a day’s one of the most intensively researched areas owing to its significance in materials science. Liquid transport through plastics is one of the most extensively researched fields in materials science. Present chapter provides a brief insight into the transport (mainly moisture/water) properties of wood/plastic composites. Keywords: Wood particles, wood plastic composites, diffusion coefficient

You might also be interested in these eBooks

Info:

Periodical:

Diffusion Foundations (Volume 23)

Pages:

187-200

Citation:

Online since:

August 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K.S. Rahman, M.N. Islam, M.M. Rahman, M.O. Hannan, R. Dungani, H.P.S.A. Khalil, Flat-pressed wood plastic composites from sawdust and recycled polyethylene terephthalate (PET): physical and mechanical properties, Springerplus. 2 (2013) 629.

DOI: 10.1186/2193-1801-2-629

Google Scholar

[2] D.J. Gardner, Y. Han, L. Wang, Wood--Plastic Composite Technology, Curr. For. Reports. 1 (2015) 139–150.

DOI: 10.1007/s40725-015-0016-6

Google Scholar

[3] Forest Products Laboratory - USDA, Wood Handbook: Wood as an Engineering Material, 2010. doi:General Technical Report FPL-GTR-190.

Google Scholar

[4] A. Gebhardt, Understanding Additive Manufacturing, 2011.

DOI: 10.3139/9783446431621

Google Scholar

[5] M. Ibrahim, N.S. Badrishah, N. Sa'ude, M.H.I. Ibrahim, Sustainable Natural Bio Composite for FDM Feedstocks, Appl. Mech. Mater. 607 (2014) 65–69.

DOI: 10.4028/www.scientific.net/AMM.607.65

Google Scholar

[6] B. Wendel, D. Rietzel, F. Kühnlein, R. Feulner, G. Hülder, E. Schmachtenberg, Additive processing of polymers, Macromol. Mater. Eng. 293 (2008) 799–809.

DOI: 10.1002/mame.200800121

Google Scholar

[7] K. Jiang, Y. Guo, D.L. Bourell, Study on the microstructure and binding mechanisms of selective laser sintered wood plastic composite, in: 24th Int. Solid Free. Fabr. Symp. - An Addit. Manuf. Conf. SFF 2013, 2013: p.497–504. http://www.scopus.com/inward/record.url?eid=2-s2.0-84898402494&partnerID=40&md5=acc73ea6c6b24a7fc1add58b81ec9839.

Google Scholar

[8] Q. Cheng, L. Muszynski, S. Shaler, J. Wang, Microstructural Changes in Wood Plastic Composites Due to Wetting and Re-drying Evaluated by X-ray Microtomography, J. Nondestruct. Eval. 29 (2010) 207–213.

DOI: 10.1007/s10921-010-0078-0

Google Scholar

[9] N.M. Stark, D.J. Gardner, Outdoor durability of wood-polymer composites, Wood-Polymer Compos. (2008) 142–165.

DOI: 10.1533/9781845694579.142

Google Scholar

[10] S. V Rangaraj, L. V Smith, Effects of Moisture on the Durability of a Wood/Thermoplastic Composite, J. Thermoplast. Compos. Mater. 13 (2000) 140–161.

DOI: 10.1177/089270570001300204

Google Scholar

[11] C.S. George, G.F. Smith, I.H. Marshall, J.J. Wu, Composite Material Response: Constitutive relations and damage mechanisms, Springer Netherlands, (1988).

Google Scholar

[12] Q. Cheng, J. Wang, S.M. Shaler, Mechanical Performances of Wood Polypropylene Composite due to Extended Moisture Immersion, J. Thermoplast. Compos. Mater. 22 (2009) 321–333.

DOI: 10.1177/0892705708098156

Google Scholar

[13] T.L. Jose, P.C. Thomas, K. Jayanarayanan, J. Mathew, K. Joseph, Solvent Uptake and Accelerated Ageing Studies of Cotton-Polypropylene Commingled Composite Systems, Polym. Polym. Compos. 18 (2010) 103–112.

DOI: 10.1177/096739111001800206

Google Scholar

[14] C. Clemons, Wood-plastic composites in the United States: the interfacing of two industries, Prod J. 52 (2002).

Google Scholar

[15] K.B. Adhikary, S. Pang, M.P. Staiger, Dimensional stability and mechanical behaviour of wood-plastic composites based on recycled and virgin high-density polyethylene (HDPE), Compos. Part B Eng. 39 (2008) 807–815.

DOI: 10.1016/j.compositesb.2007.10.005

Google Scholar

[16] S. Karumuri, S. Hiziroglu, A.K. Kalkan, The distribution and role of nanoclay in[space]lignocellulose-polymer blends, RSC Adv. 7 (2017) 19406–19416.

DOI: 10.1039/C7RA02082A

Google Scholar

[17] V. Steckel, C.M. Clemons, H. Thoemen, Effects of material parameters on the diffusion and sorption properties of wood-flour/polypropylene composites, J. Appl. Polym. Sci. 103 (2007) 752–763.

DOI: 10.1002/app.25037

Google Scholar

[18] W.V. Srubar, S.L. Billington, A micromechanical model for moisture-induced deterioration in fully biorenewable wood–plastic composites, Compos. Part A Appl. Sci. Manuf. 50 (2013) 81–92.

DOI: 10.1016/j.compositesa.2013.02.001

Google Scholar

[19] I. Ghasemi, B. Kord, Long-term Water Absorption Behaviour of Polypropylene/Wood Flour/Organoclay Hybrid Nanocomposite, Iran. Polym. J. 18 (2009) 683–691.

Google Scholar

[20] M.N. Ichazo, C. Albano, J. González, R. Perera, M. V. Candal, Polypropylene/wood flour composites: Treatments and properties, Compos. Struct. 54 (2001) 207–214.

DOI: 10.1016/S0263-8223(01)00089-7

Google Scholar

[21] S.K. Najafi, A. Kiaefar, E. Hamidina, M. Tajvidi, Water Absorption Behavior of Composites from Sawdust and Recycled Plastics, J. Reinf. Plast. Compos. 26 (2007) 341–348.

DOI: 10.1177/0731684407072519

Google Scholar

[22] R. Liu, J. Cao, Y. Chen, Stress relaxation of composites made of polypropylene and organo-montmorillonite modified wood flour during water immersion, Holzforschung. 71 (2017) 163–170.

DOI: 10.1515/hf-2016-0116

Google Scholar

[23] S. Seethamraju, P.C. Ramamurthy, G. Madras, Performance of an ionomer blend-nanocomposite as an effective gas barrier material for organic devices, RSC Adv. 4 (2014) 11176.

DOI: 10.1039/c3ra47442a

Google Scholar

[24] R. Liu, S. Luo, J. Cao, Y. Peng, Characterization of organo-montmorillonite (OMMT) modified wood flour and properties of its composites with poly(lactic acid), Compos. Part A Appl. Sci. Manuf. 51 (2013) 33–42.

DOI: 10.1016/j.compositesa.2013.03.019

Google Scholar

[25] C. Xu, C. Xing, H. Pan, L.M. Matuana, H. Zhou, Hygrothermal aging properties of wood plastic composites made of recycled high density polypropylene as affected by inorganic pigments, Polym. Eng. Sci. 55 (2015) 2127–2132.

DOI: 10.1002/pen.24054

Google Scholar

[26] G.W. Beckermann, K.L. Pickering, Engineering and evaluation of hemp fibre reinforced polypropylene composites: Fibre treatment and matrix modification, Compos. Part A Appl. Sci. Manuf. 39 (2008) 979–988.

DOI: 10.1016/j.compositesa.2008.03.010

Google Scholar

[27] Y.-H. Cui, X.-X. Wang, Q. Xu, Z.-Z. Xia, Research on Moisture Absorption Behavior of Recycled Polypropylene Matrix Wood Plastic Composites, J. Thermoplast. Compos. Mater. 24 (2011) 65–82.

DOI: 10.1177/0892705710376470

Google Scholar

[28] C. J??rdens, S. Wietzke, M. Scheller, M. Koch, Investigation of the water absorption in polyamide and wood plastic composite by terahertz time-domain spectroscopy, Polym. Test. 29 (2010) 209–215.

DOI: 10.1016/j.polymertesting.2009.11.003

Google Scholar

[29] S. Tamrakar, R.A. Lopez-Anido, Water absorption of wood polypropylene composite sheet piles and its influence on mechanical properties, Constr. Build. Mater. 25 (2011) 3977–3988.

DOI: 10.1016/j.conbuildmat.2011.04.031

Google Scholar

[30] M.A. Khan, M.S. Rahman, Moisture Sorption Isotherms of Wood and Wood-Plastic Composites (WPC), Polym. Plast. Technol. Eng. 30 (1991) 435–440.

DOI: 10.1080/03602559108019211

Google Scholar

[31] M.A. Khan, K.M.I. Ali, Effect of Moisture and Heat on Mechanical Properties of Wood and Wood-Plastic Composite, Polym. Plast. Technol. Eng. 32 (1993) 5–13.

DOI: 10.1080/03602559308020151

Google Scholar