Diffusion, Transport and Water Absorption Properties of Eco-Friendly Polymer Composites

Article Preview

Abstract:

The availability of sustainable and environmentally friendly energy sources is one of the biggest challenges faced by scientists and engineering communities. First of all, the fossil fuels used to meet existing energy demands cause the depletion of resources, the increase of greenhouse gas emissions, and eventually destruction of nature. Polymers have many industrial application areas due to the ease of processing, the reasonable price and the ability to modify with the desired features. Biopolymers have become a focus of attention in terms of the polymer sector because biomass can be separated into harmless products such as CO2 and H2O in the natural environment and can have sustainable resources. The studies on biomass and hydrogen fuel cells are more advantageous than other alternative and clean energy sources because they have the continuous energy supply, compact design, and wide application areas without being dependent on nature. In practice, the polymer electrolyte membrane fuel cells are pinched among the other fuel cells. For this purpose, in this chapter diffusion, transport and water absorption properties of eco-friendly polymer composites generally used are discussed.

You might also be interested in these eBooks

Info:

Periodical:

Diffusion Foundations (Volume 23)

Pages:

222-231

Citation:

Online since:

August 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B. Aday, Y. Yıldız, R. Ulus, S. Eris, F. Sen, M. Kaya, One-Pot, Efficient and Green Synthesis of Acridinedione Derivatives Using Highly Monodisperse Platinum Nanoparticles Supported with Reduced Graphene Oxide, New J. Chem. 40 (2016) 748–754.

DOI: 10.1039/c5nj02098k

Google Scholar

[2] B. Aday, H. Pamuk, M. Kaya, F. Sen, Graphene Oxide as Highly Effective and Readily Recyclable Catalyst Using for the One-Pot Synthesis of 1,8-Dioxoacridine Derivatives, J. Nanosci. Nanotechnol. 16 (2016) 6498–6504.

DOI: 10.1166/jnn.2016.12432

Google Scholar

[3] B. Sen, A. Şavk, E. Kuyuldar, S. Karahan Gülbay, F. Sen, Hydrogen Liberation from The Hydrolytic Dehydrogenation of Hydrazine Borane in Acidic Media, Int. J. Hydrogen Energy. 43 (2018) 17978–17983.

DOI: 10.1016/j.ijhydene.2018.03.225

Google Scholar

[4] B. Şen, B. Demirkan, A. Şavk, S. Karahan Gülbay, F. Şen, Trimetallic PdRuNi Nanocomposites Decorated on Graphene Oxide: A Superior Catalyst for The Hydrogen Evolution Reaction, Int. J. Hydrogen Energy. 43 (2018) 17984–17992.

DOI: 10.1016/j.ijhydene.2018.07.122

Google Scholar

[5] B. Şen, B. Demirkan, M. Levent, A. Şavk, F. Şen, Silica-based Monodisperse PdCo Nanohybrids as Highly Efficient and Stable Nanocatalyst for Hydrogen Evolution Reaction, Int. J. Hydrogen Energy. 43 (2018) 20234–20242.

DOI: 10.1016/j.ijhydene.2018.07.080

Google Scholar

[6] B. Şen, B. Demirkan, A. Savk, R. Kartop, M.S. Nas, M.H. Alma, S. Sürdem, F. Şen, High-performance graphite-supported ruthenium nanocatalyst for hydrogen evolution reaction, J. Mol. Liq. 268 (2018) 807–812.

DOI: 10.1016/j.molliq.2018.07.117

Google Scholar

[7] A. Savk, B. Özdil, B. Demirkan, M.S. Nas, M.H. Calimli, M.H. Alma, Inamuddin, A.M. Asiri, F. Şen, Multiwalled carbon nanotube-based nanosensor for ultrasensitive detection of uric acid, dopamine, and ascorbic acid, Mater. Sci. Eng. C. 99 (2019) 248–254.

DOI: 10.1016/j.msec.2019.01.113

Google Scholar

[8] B. Sen, E. Kuyuldar, A. Şavk, H. Calimli, S. Duman, F. Sen, Monodisperse ruthenium copper alloy nanoparticles decorated on reduced graphene oxide for dehydrogenation of DMAB, Int. J. Hydrogen Energy. 44 (2019) 10744–10751.

DOI: 10.1016/j.ijhydene.2019.02.176

Google Scholar

[9] R. Ayranci, B. Demirkan, B. Sen, A. Şavk, M. Ak, F. Şen, Use of the monodisperse Pt/Ni@rGO nanocomposite synthesized by ultrasonic hydroxide assisted reduction method in electrochemical nonenzymatic glucose detection, Mater. Sci. Eng. C. 99 (2019) 951–956.

DOI: 10.1016/j.msec.2019.02.040

Google Scholar

[10] S. Taçyıldız, B. Demirkan, Y. Karataş, M. Gulcan, F. Sen, Monodisperse Ru Rh bimetallic nanocatalyst as highly efficient catalysts for hydrogen generation from hydrolytic dehydrogenation of methylamine-borane, J. Mol. Liq. 285 (2019) 1–8.

DOI: 10.1016/j.molliq.2019.04.019

Google Scholar

[11] Z. Daşdelen, Y. Yıldız, S. Eriş, F. Şen, Enhanced Electrocatalytic Activity and Durability of Pt Nanoparticles Decorated on GO-PVP Hybride Material for Methanol Oxidation Reaction, Appl. Catal. B Environ. 219 (2017) 511–516.

DOI: 10.1016/j.apcatb.2017.08.014

Google Scholar

[12] T. Demirci, B. Çelik, Y. Yıldız, S. Eriş, M. Arslan, F. Sen, B. Kilbas, One-pot synthesis of Hantzsch dihydropyridines using a highly efficient and stable PdRuNi@GO catalyst, RSC Adv. 6 (2016) 76948–76956.

DOI: 10.1039/c6ra13142e

Google Scholar

[13] S. Akocak, B. Şen, N. Lolak, A. Şavk, M. Koca, S. Kuzu, F. Şen, One-Pot Three-Component Synthesis of 2-Amino-4H-Chromene Derivatives by Using Monodisperse Pd Nanomaterials Anchored Graphene Oxide as Highly Efficient and Recyclable Catalyst, Nano-Structures & Nano-Objects. 11 (2017) 25–31.

DOI: 10.1016/j.nanoso.2017.06.002

Google Scholar

[14] E. Demir, A. Savk, B. Sen, F. Sen, A Novel Monodisperse Metal Nanoparticles Anchored Graphene Oxide as Counter Electrode for Dye-Sensitized Solar Cells, Nano-Structures and Nano-Objects. 12 (2017) 41–45.

DOI: 10.1016/j.nanoso.2017.08.018

Google Scholar

[15] E. Demir, B. Sen, F. Sen, Highly Efficient Pt Nanoparticles and f-MWCNT Nanocomposites Based Counter Electrodes for Dye-sensitized Solar Cells, Nano-Structures & Nano-Objects. 11 (2017) 39–45.

DOI: 10.1016/j.nanoso.2017.06.003

Google Scholar

[16] E. Erken, H. Pamuk, Ö. Karatepe, G. Başkaya, H. Sert, O.M. Kalfa, F. Şen, New Pt(0) Nanoparticles as Highly Active and Reusable Catalysts in the C1–C3 Alcohol Oxidation and the Room Temperature Dehydrocoupling of Dimethylamine-Borane (DMAB), J. Clust. Sci. 27 (2016) 9–23.

DOI: 10.1007/s10876-015-0892-8

Google Scholar

[17] E. Erken, Y. Yıldız, B. Kilbaş, F. Şen, Synthesis and Characterization of Nearly Monodisperse Pt Nanoparticles for C 1 to C 3 Alcohol Oxidation and Dehydrogenation of Dimethylamine-borane (DMAB), J. Nanosci. Nanotechnol. 16 (2016) 5944–5950.

DOI: 10.1166/jnn.2016.11683

Google Scholar

[18] E. Erken, İ. Esirden, M. Kaya, F. Sen, A rapid and novel method for the synthesis of 5-substituted 1H-tetrazole catalyzed by exceptional reusable monodisperse Pt NPs@AC under the microwave irradiation, RSC Adv. 5 (2015) 68558–68564.

DOI: 10.1039/c5ra11426h

Google Scholar

[19] S. Eris, Z. Daşdelen, F. Sen, Investigation of electrocatalytic activity and stability of Pt@f-VC catalyst prepared by in-situ synthesis for Methanol electrooxidation, Int. J. Hydrogen Energy. 43 (2018) 385–390.

DOI: 10.1016/j.ijhydene.2017.11.063

Google Scholar

[20] S. Eris, Z. Daşdelen, Y. Yıldız, F. Sen, Nanostructured Polyaniline-rGO Decorated Platinum Catalyst with Enhanced Activity and Durability for Methanol Oxidation, Int. J. Hydrogen Energy. 43 (2018) 1337–1343.

DOI: 10.1016/j.ijhydene.2017.11.051

Google Scholar

[21] İ. Esirden, E. Erken, M. Kaya, F. Sen, Monodisperse Pt NPs@rGO as Highly Efficient and Reusable Heterogeneous Catalysts for The Synthesis of 5-Substituted 1H-Tetrazole Derivatives, Catal. Sci. Technol. 5 (2015) 4452–4457.

DOI: 10.1039/c5cy00864f

Google Scholar

[22] H. Göksu, Y. Yıldız, B. Çelik, M. Yazıcı, B. Kılbaş, F. Şen, Highly Efficient and Monodisperse Graphene Oxide Furnished Ru/Pd Nanoparticles for the Dehalogenation of Aryl Halides via Ammonia Borane, ChemistrySelect. 1 (2016) 953–958.

DOI: 10.1002/slct.201600207

Google Scholar

[23] S. Bozkurt, B. Tosun, B. Sen, S. Akocak, A. Savk, M.F. Ebeoğlugil, F. Sen, A Hydrogen Peroxide Sensor Based on TNM Functionalized Reduced Graphene Oxide Grafted with Highly Monodisperse Pd Nanoparticles, Anal. Chim. Acta. 989 (2017) 88–94.

DOI: 10.1016/j.aca.2017.07.051

Google Scholar

[24] H. Göksu, S.F. Ho, Ö. Metin, K. Korkmaz, A. Mendoza Garcia, M.S. Gültekin, S. Sun, Tandem Dehydrogenation of Ammonia Borane and Hydrogenation of Nitro/Nitrile Compounds Catalyzed by Graphene-Supported NiPd Alloy Nanoparticles, ACS Catal. 4 (2014) 1777–1782.

DOI: 10.1021/cs500167k

Google Scholar

[25] H. Goksu, Y. Yıldız, B. Çelik, M. Yazici, B. Kilbas, F. Sen, Eco-friendly Hydrogenation of Aromatic Aldehyde Compounds by Tandem Dehydrogenation of Dimethylamine-Borane in The Presence of A Reduced Graphene Oxide Furnished Platinum Nanocatalyst, Catal. Sci. Technol. 6 (2016) 2318–2324.

DOI: 10.1039/c5cy01462j

Google Scholar

[26] Ö. Karatepe, Y. Yıldız, H. Pamuk, S. Eris, Z. Dasdelen, F. Sen, Enhanced Electrocatalytic Activity and Durability of Highly Monodisperse Pt@PPy–PANI Nanocomposites as A Novel Catalyst for The Electro-Oxidation of Methanol., RSC Adv. 6 (2016) 50851–50857.

DOI: 10.1039/c6ra06210e

Google Scholar

[27] B. Şahin, A. Aygün, H. Gündüz, K. Şahin, E. Demir, S. Akocak, F. Şen, Cytotoxic Effects of Platinum Nanoparticles Obtained from Pomegranate Extract by The Green Synthesis Method on The MCF-7 Cell Line, Colloids Surfaces B Biointerfaces. 163 (2018) 119–124.

DOI: 10.1016/j.colsurfb.2017.12.042

Google Scholar

[28] B. Şahin, E. Demir, A. Aygün, H. Gündüz, F. Şen, Investigation of the effect of pomegranate extract and monodisperse silver nanoparticle combination on MCF-7 cell line, J. Biotechnol. 260 (2017) 79–83.

DOI: 10.1016/j.jbiotec.2017.09.012

Google Scholar

[29] R. Ulus, Y. Yıldız, S. Eriş, B. Aday, F. Şen, M. Kaya, Functionalized Multi-Walled Carbon Nanotubes (f-MWCNT) as Highly Efficient and Reusable Heterogeneous Catalysts for the Synthesis of Acridinedione Derivatives, ChemistrySelect. 1 (2016) 3861–3865.

DOI: 10.1002/slct.201600719

Google Scholar

[30] Y. Yıldız, E. Erken, H. Pamuk, H. Sert, F. Şen, Monodisperse Pt Nanoparticles Assembled on Reduced Graphene Oxide: Highly Efficient and Reusable Catalyst for Methanol Oxidation and Dehydrocoupling of Dimethylamine-Borane (DMAB), J. Nanosci. Nanotechnol. 16 (2016) 5951–5958.

DOI: 10.1166/jnn.2016.11710

Google Scholar

[31] Y. Yıldız, H. Pamuk, Ö. Karatepe, Z. Dasdelen, F. Sen, Carbon Black Hybrid Material Furnished Monodisperse Platinum Nanoparticles as Highly Efficient and Reusable Electrocatalysts for Formic Acid Electro-oxidation, RSC Adv. 6 (2016) 32858–32862.

DOI: 10.1039/c6ra00232c

Google Scholar

[32] Y. Yıldız, S. Kuzu, B. Sen, A. Savk, S. Akocak, F. Şen, Different ligand based monodispersed Pt nanoparticles decorated with rGO as highly active and reusable catalysts for the methanol oxidation, Int. J. Hydrogen Energy. 42 (2017) 13061–13069.

DOI: 10.1016/j.ijhydene.2017.03.230

Google Scholar

[33] Y. Koskun, A. Şavk, B. Şen, F. Şen, Highly Sensitive Glucose Sensor Based on Monodisperse Palladium Nickel/Activated Carbon Nanocomposites, Anal. Chim. Acta. 1010 (2018) 37–43.

DOI: 10.1016/j.aca.2018.01.035

Google Scholar

[34] B. Çelik, E. Erken, S. Eriş, Y. Yıldız, B. Şahin, H. Pamuk, F. Sen, Highly monodisperse Pt(0)@AC NPs as highly efficient and reusable catalysts: the effect of the surfactant on their catalytic activities in room temperature dehydrocoupling of DMAB, Catal. Sci. Technol. 6 (2016) 1685–1692.

DOI: 10.1039/c5cy01371b

Google Scholar

[35] B. Şen, A. Aygün, A. Şavk, S. Akocak, F. Şen, Bimetallic Palladium–iridium Alloy Nanoparticles as Highly Efficient and Stable Catalyst for The Hydrogen Evolution Reaction, Int. J. Hydrogen Energy. 43 (2018) 20183–20191.

DOI: 10.1016/j.ijhydene.2018.07.081

Google Scholar

[36] B. Şen, A. Aygün, T.O. Okyay, A. Şavk, R. Kartop, F. Şen, Monodisperse Palladium Nanoparticles Assembled on Graphene Oxide with The High Catalytic Activity and Reusability in The Dehydrogenation of Dimethylamine-borane. International Journal of Hydrogen Energy, 43 (2018) 20176–20182. https://doi.org/10.1016/j.ij, Int. J. Hydrogen Energy. 43 (2018) 20176–20182.

DOI: 10.1016/j.ijhydene.2018.03.175

Google Scholar

[37] B. Çelik, Y. Yıldız, H. Sert, E. Erken, Y. Koşkun, F. Şen, Monodispersed palladium–cobalt alloy nanoparticles assembled on poly(N-vinyl-pyrrolidone) (PVP) as a highly effective catalyst for dimethylamine borane (DMAB) dehydrocoupling, RSC Adv. 6 (2016) 24097–24102.

DOI: 10.1039/c6ra00536e

Google Scholar

[38] B. Çelik, S. Kuzu, E. Erken, H. Sert, Y.Y. Koşkun, F. Şen, Nearly Monodisperse Carbon Nanotube Furnished Nanocatalysts as Highly Efficient and Reusable Catalyst for Dehydrocoupling of DMAB and C1 to C3 Alcohol Oxidation, Int. J. Hydrogen Energy. 41 (2016) 3093–3101.

DOI: 10.1016/j.ijhydene.2015.12.138

Google Scholar

[39] B. Sen, S. Kuzu, E. Demir, S. Akocak, F. Sen, Highly monodisperse RuCo nanoparticles decorated on functionalized multiwalled carbon nanotube with the highest observed catalytic activity in the dehydrogenation of dimethylamine−borane, Int. J. Hydrogen Energy. 42 (2017) 23292–23298.

DOI: 10.1016/j.ijhydene.2017.06.032

Google Scholar

[40] B. Çelik, G. Başkaya, H. Sert, Ö. Karatepe, E. Erken, F. Şen, B. Celik, G. Baskaya, H. Sert, O. Karatepe, E. Erken, F. Sen, Monodisperse Pt(0)/DPA@GO nanoparticles as highly active catalysts for alcohol oxidation and dehydrogenation of DMAB, Int. J. Hydrogen Energy. 41 (2016) 5661–5669.

DOI: 10.1016/j.ijhydene.2016.02.061

Google Scholar

[41] B. Sen, E. Kuyuldar, B. Demirkan, T. Onal Okyay, A. Şavk, F. Sen, Highly Efficient Polymer Supported Monodisperse Ruthenium-nickel Nanocomposites for Dehydrocoupling of Dimethylamine Borane, J. Colloid Interface Sci. 526 (2018) 480–486.

DOI: 10.1016/j.jcis.2018.05.021

Google Scholar

[42] J. Ahmed, S.K. Varshney, Polylactides—Chemistry, Properties and Green Packaging Technology: A Review, Int. J. Food Prop. 14 (2011) 37–58.

DOI: 10.1080/10942910903125284

Google Scholar

[43] † Suprakas Sinha Ray, ‡ Kazunobu Yamada, *,† Masami Okamoto, ‡ and Akinobu Ogami, K. Ueda‡, New Polylactide/Layered Silicate Nanocomposites. 3. High-Performance Biodegradable Materials, (2003).

DOI: 10.1021/cm020953r

Google Scholar

[44] S. Sinha Ray, Polylactide-Based Bionanocomposites: A Promising Class of Hybrid Materials, Acc. Chem. Res. 45 (2012) 1710–1720.

DOI: 10.1021/ar3000376

Google Scholar

[45] T. Amnuaikit, CHAPTER 27. Diffusion and Transport of Liquids, Vapours and Gases Through Natural Rubber Composites and Nanocomposites, in: 2013: p.772–799.

DOI: 10.1039/9781849737654-00772

Google Scholar

[46] C.A. Kumins, T.K. Kwei, Free volume and other theories, in: Diffus. Polym., (1968).

Google Scholar

[47] H. Cong, M. Radosz, B. Towler, Y. Shen, Polymer–inorganic nanocomposite membranes for gas separation, Sep. Purif. Technol. 55 (2007) 281–291.

DOI: 10.1016/j.seppur.2006.12.017

Google Scholar

[48] C. Nah, M.A. Kader, Barrier Properties of Rubber Nanocomposites, (n.d.) 499–526.

Google Scholar

[49] A. Jacob, P. Kurian, A.S. Aprem, Transport properties of natural rubber latex layered clay nanocomposites, J. Appl. Polym. Sci. 108 (2008) 2623–2629.

DOI: 10.1002/app.26615

Google Scholar

[50] K. Bhattacharyya, B.S. Goldschmidt, M. Hannink, S. Alexander, A. Jurkevic, J.A. Viator, Gold Nanoparticle–Mediated Detection of Circulating Cancer Cells, Clin. Lab. Med. 32 (2012) 89–101.

DOI: 10.1016/j.cll.2012.01.001

Google Scholar

[51] W. He, G. Lin, T. Van Nguyen, Diagnostic tool to detect electrode flooding in proton-exchange-membrane fuel cells, AIChE J. 49 (2003) 3221–3228.

DOI: 10.1002/aic.690491221

Google Scholar

[52] R.M. Barrer, G. Skirrow, Transport and equilibrium phenomena in gas–elastomer systems. I. Kinetic phenomena, J. Polym. Sci. 3 (1948) 549–563.

DOI: 10.1002/pol.1948.120030410

Google Scholar

[53] C.M. Hussain, Handbook of nanomaterials for industrial applications, n.d. https://books.google.com.tr/books?id=6TtmDwAAQBAJ&pg=PA984&lpg=PA984&dq=%5B17%5D.+M.+Krissanasaeranee,+S.+Wongkasemjit,+A.K.+Cheetham,+D.+Eder,+Chem.+Phys.+Lett.+496+(2010)+133&source=bl&ots=Aw5HNItjIc&sig=ACfU3U34ZDVLa_YWenmgLnFBc1dbGGrbeQ&hl=tr&sa=X&ved=2ahUKEwig84fL_fngAhVGqxoKHbXFAMoQ6AEwAXoECAgQAQ#v=onepage&q=%5B17%5D. M. Krissanasaeranee%2C S. Wongkasemjit%2C A.K. Cheetham%2C D. Eder%2C Chem. Phys. Lett. 496 (2010) 133&f=false (accessed March 11, 2019).

DOI: 10.1016/j.cplett.2010.07.043

Google Scholar

[54] G. Mittal, K.Y. Rhee, V. Mišković-Stanković, D. Hui, Reinforcements in multi-scale polymer composites: Processing, properties, and applications, Compos. Part B Eng. 138 (2018) 122–139.

DOI: 10.1016/j.compositesb.2017.11.028

Google Scholar

[55] K. Shirvanimoghaddam, S.U. Hamim, M. Karbalaei Akbari, S.M. Fakhrhoseini, H. Khayyam, A.H. Pakseresht, E. Ghasali, M. Zabet, K.S. Munir, S. Jia, J.P. Davim, M. Naebe, Carbon fiber reinforced metal matrix composites: Fabrication processes and properties, Compos. Part A Appl. Sci. Manuf. 92 (2017) 70–96.

DOI: 10.1016/j.compositesa.2016.10.032

Google Scholar

[56] A.R. Pereira, J.C.P. de Souza, R.M. Iost, F.C.P.F. Sales, F.N. Crespilho, Application of carbon fibers to flexible enzyme electrodes, J. Electroanal. Chem. 780 (2016) 396–406.

DOI: 10.1016/j.jelechem.2016.01.004

Google Scholar

[57] E. Antolini, Composite materials for polymer electrolyte membrane microbial fuel cells, Biosens. Bioelectron. 69 (2015) 54–70.

DOI: 10.1016/j.bios.2015.02.013

Google Scholar

[58] A. Malinauskas, J. Malinauskiene, A. Ramanavičius, Conducting polymer-based nanostructurized materials: electrochemical aspects, Nanotechnology. 16 (2005) R51–R62.

DOI: 10.1088/0957-4484/16/10/r01

Google Scholar