Obtaining Food Flours through the Drying of Tamarind Fruits

Article Preview

Abstract:

Tamarind is a fruit of foreign origin, more precisely African, but it has an excellent adaptation to the different types of climatic conditions in other continents. In Brazil, for example, it is possible to find it in several states. Although tamarind has a considerable yield on both its constituent parts, shell, pulp and seeds, and have a low purchasing power, the fruit is largely wasted and there are few in-depth studies on the same. As a way of reuse, the aim was to transform the fruit into new products, such as flours used in human food. The objective of this study was to make the drying of the tamarind fruits to obtain the ideal characteristics for the development of a food flour and to evaluate the physical-chemical quality and to determine the bioactive compounds of the tamarind flour. Drying was done at 60 °C in a greenhouse, during different drying periods, which varied according to each part of the fruit, after which the flours were elaborated and characterized for the physicochemical and bioactive parameters. In the physico-chemical characterization, a good presence of proteins in the seed flour (7.09%), low sugar content in the pulp flour (0.74%), good values ​​for lipids in the seed flour (3, 41%) and good ash values in the bark flour (2.69%). In general, the flour besides proteins had a good source of energy and minerals. Among the bioactive compounds present in the tamarind flour were the high contents of phenolic compounds (1564.9 mg/100g), vitamin C (80.95%), lycopene (89.62 mg/g), flavonoids (20.44 mg/100g) and anthocyanins (12.84mg / 10g) in the seed flour, carotenoids (20.80 mg/g) in the pulp flour. In general, flours produced from tamarind had excellent characteristics for the preparation of bakery products.

You might also be interested in these eBooks

Info:

Periodical:

Diffusion Foundations (Volume 25)

Pages:

1-8

Citation:

Online since:

January 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B.A.A. Sousa, R. T. P. Correia, Biotechnological reuse of fruit residues as a rational strategy for agro-industrial resources. J Tech Manag. Innov., 5: 104-112. (2010).

Google Scholar

[2] P.C. Pereira, A cultura do tamarindeiro (Tamarindus indica L.).Disponível em: <www.fruticultura.iciag.ufu.br/tamarindo.htm>. Acesso em: 11 set. (2016).

Google Scholar

[3] P.C. Pereira, B. Melo, R.S. Freitas, M. A.Tomaz, C. J.P. Freitas,Tamarind seedlings produced under different levels of organic matter added to the substrate. Revista Verde de Agroecologia e Desenvolvimento Sustentável, Mossoró, v. 5, n. 3, pp.152-159, 2010.(In Portuguese).

Google Scholar

[4] A.F.A. Ferreira, Propagação vegetativa de Tamarindus indica L. 96 f. 2014. Dissertação de Mestrado em Agronomia, UNESP, Ilha Solteira, São Paulo, (2014).

Google Scholar

[5] J.C. Viveros, K.A. Figueroa, F. Gallardo, E. García, O. Ruiz, F. Hernández, Sistemas de manejo y comercialización de tamarindo (Tamarindus indica L.) entresmunicipios de Veracruz. Rev. Mex. Ciencias Agrícolas. México, (2012).

DOI: 10.29312/remexca.v3i6.1373

Google Scholar

[6] E. De Caluw, K. Halamov, P. Van Damme, Tamarindus indica L.: a review of traditional uses, phytochemistry and pharmacology. Afrika Focus. 23(1): 53-83. (2010).

DOI: 10.1163/2031356x-02301006

Google Scholar

[7] N. Razali, S. Mat-Junit, A.F. Abdul-Muthalib, S. Subramaniam, A. Abdul-Aziz, Effects of various solvents on the extraction of antioxidant phenolics from the leaves, seeds, veins and skins of Tamarindusindica L. Food Chemistry. United Kingdom. (2012).

DOI: 10.1016/j.foodchem.2011.09.001

Google Scholar

[8] E.D. Azevedo, A. M. Alves, Engineeringseparation process. Lisboa: IST Press, 820 p.2013.(In Portuguese).

Google Scholar

[9] C.E.M.R. Gurgel, Foam-mat of Graviola Pulp - Process Performance and Product Characteristics. BluchrChemicalEngineeringProceedings. 86 p.2014.(In Portuguese).

Google Scholar

[10] A.P. Martinazzo, P. C. Corrêa, E. C. Melo, F. F. Barbosa, Effective diffusivity of Cymbopogon citratus (DC.) Stapf leaves submitted tothe drying process with different leaf length cuts and air temperature. Revista Brasileira de Plantas Medicinais, Botucatu, v. 9, n. 1, pp.68-72, 2007.(In Portuguese).

DOI: 10.1590/s1516-05722010000400013

Google Scholar

[11] P.J. Fellows, Food processing technology: principles and practice. São Paulo: Editora Artmed, 602 p.2006.(In Portuguese).

Google Scholar

[12] F. Castilho, G. G. Fontanari, J. P. Batistuti, Evaluation of some functional properties of lupin sweet flour (Lupinusalbus) and faba bean flour (Cajanuscajan (L) Millsp) and their utilization in cooked ham production. Ciência e Tecnologia de Alimentos, Campinas-SP, v. 30, n. 1, pp.68-75, 2010.(In Portuguese).

Google Scholar

[13] S.B. Lopes, Utilization of the residue generated in the production of mini beets for the production of flour. Comunicado técnico Embrapa. 2011.(In Portuguese).

Google Scholar

[14] ANVISA - BRASIL. Ministério da saúde. Agência Nacional de Vigilância Sanitária. Resolução Diretória Colegiada - RDC nº 263, de 22 de setembro de 2005. Regulamento técnico para produtos de cereais, amidos, farinhas e farelos.

DOI: 10.22239/2317-269x.01481

Google Scholar

[15] M.L.R. Silveira, O. S. Santos, N. G. Penna, C. K. Sautter, C. S. Rosa, S. M. M. Bertagnolli, Aproveitamento tecnológico das sementes de goiaba (Psidiumguajava L.) como farinha na elaboração de biscoitos. Boletim CEPPA, Curitiba-PR, v. 34, n. 1, pp.1-21, (2016).

DOI: 10.5380/cep.v34i2.53178

Google Scholar

[16] P.A. Castell, H.A. Váquirio, J.A. Cárcel, C. Rosselló, A. Femenia, S. Simal, Mathematical modeling of moisture distribution and kinetics in cheese drying. Drying Technology, v. 30, pp.1247-1255, (2012).

DOI: 10.1080/07373937.2012.704465

Google Scholar

[17] F.C. Moraes filho, E. L. Oliveia, E. M. M. A. Nobrega, J. A. Oliveira, R. T. P. Correira, Convective drying of acerola (malphigia emarginata dc.): application of semi-theoretical models. Holos, v.01, pp.86-95, (2014).

DOI: 10.15628/holos.2014.970

Google Scholar

[18] L.C.P. Almeida,Osmotic dehydration and convective drying of grapes(cultivar crimson). Dissertação (Mestrado em Engenharia de Alimentos) - Federal Universityof Santa Catarina, Florianópolis, Brazil, 2013. 105 f. (In Portuguese).

Google Scholar

[19] M.A. Madrau, A. Sanguinetti, A. Del Caro, C. Fadda, A. Piga, Contribution of melanoidins to the antioxidant activity of prunes. Journal of Food Quality, v. 33, pp.155-170, (2010).

DOI: 10.1111/j.1745-4557.2010.00328.x

Google Scholar