[1]
G.V. Barbosa-Cánovas, J.A. Fontana, S.J. Schmidt, T.P. Labuza,Water activity in foods: fundamentals and applications. Ames: Blackwell Publishing Profesional, (2007).
DOI: 10.1002/9781118765982
Google Scholar
[2]
J. Benelli, G. Toniazzo, R.C. Prestes M.V. Tres, Development and utilization of pork skin emulsion in mortadella as a soy protein substitute. Int. Food Res., 22(5) (2015) 2126-2132.
Google Scholar
[3]
S.M.C. Celestino, Principle of Food Drying. Planatina, DF, Brazil: Embrapa Cerrados, 2010. (In Portuguese).
Google Scholar
[4]
T.P. Labuza, The effect of water activity on reaction kinetics of food deterioration. Food Technol., 34(4) (1980) 36-41.
Google Scholar
[5]
B. Demczuk Júnior, D.T. Fachin, R.H. Ribani, R.J.S. Freitas, Degradation of color and ascorbic acid in osmotic dehydration of kiwi. Boletim do Centro de Pesquisa e Processamento de Alimentos. 26 (2) (2008) 229-238. (In Portuguese).
DOI: 10.5380/cep.v26i2.13278
Google Scholar
[6]
A.V. Machado, E.L.L. Oliveira, E.S. Santos, J. A. Oliveira, L.M. Freitas, Evaluation of solar drying under forced convection drying cashew pulp. Revista Verde de Agroecologia e Desenvolvimento Sustentável. 6 (1) (2011) 1-7. (In Portuguese).
Google Scholar
[7]
G.D. Mercali, C.P. Kechinski, J. A. Coelho, I. C. Tessaro, L. D. F. Marczak, Study of mass transfer during the osmotic dehydration of blueberry. Braz. J. Food Technol. 13 (2) (2010) 91-97. (In Portuguese).
Google Scholar
[8]
A.K. Yadav, S.V. Singh,Osmotic dehydration of fruits and vegetables: A review.J. Food Sci. Technol., 51 (9)(2014) 1654–1673.
DOI: 10.1007/s13197-012-0659-2
Google Scholar
[9]
L.Mayor, R.Moreira, A. M. Sereno, Shrinkage, density, porosity and shape changes during dehydration of pumpkin (Cucurbita pepo L.) fruits. J. Food Eng. 103(1) (2011) 29-37.
DOI: 10.1016/j.jfoodeng.2010.08.031
Google Scholar
[10]
L.G. Perez, F.M.N. Oliveira, J. S. Andrade, M. Moreira Filho, Kinetic drying of cupuaçu pulp (Theobroma grandiflorum) pre-dehydrated by immersion-impregnation. Revista Ciência Agronômica. 44 (1) (2013) 102-6. (In Portuguese).
DOI: 10.1590/s1806-66902013000100013
Google Scholar
[11]
I.I. Ruiz-López, H. Ruiz-Espinosa, E. Herman-Lara, G. Zárate-Castillo, Modeling of kinetics, equilibrium and distribution data of osmotically dehydration carambola (Averrhoa carambola L.) in sugar solutions. J. Food Eng. 104(2) (2011) 218-226.
DOI: 10.1016/j.jfoodeng.2010.12.013
Google Scholar
[12]
E. Devic,S. Guyoi, J. Daudin, C. Bonazzi, Effect of temperature and cultivar on polyphenol retention and mass transfer during osmotic dehydration of apples. J. Agric. Food Chem. 58(1) 2010 606-14.
DOI: 10.1021/jf903006g
Google Scholar
[13]
U.D. Chavan, R. Amarowicz, Osmotic dehydration process for preservation of fruits and vegetables. J. Food Res.1(2) (2012) 201-209.
DOI: 10.5539/jfr.v1n2p202
Google Scholar
[14]
V. Ramya, N.K. Jain, A review on osmotic dehydration of fruits and vegetables: an integrated approach. J. Food Process Eng. 40 (3) 2016 1-22.
DOI: 10.1111/jfpe.12440
Google Scholar
[15]
T. Pessoa, D.R.S Silva, F.F. Gurjão, D.S.A Miranda, M.E.M. Duarte, M.E.M.R.C. Mata, Kinetic of Osmotic dehydration and physico-chemical characteristics of guava Paluma,. Tecnologia & Ciências Agropecuária. 10(6)(2016) 77-82. (In Portuguese).
Google Scholar
[16]
C.L.S. Chicherchio, Cassava and major derivatives. In: CONAB. Perspectivas para agropecuária: Safra 2014/15. Brasília, Brazil: CONAB.(2014) 106-117.
Google Scholar
[17]
AOAC. Official Methods of Analysis of AOAC International, (1996).
Google Scholar
[18]
G.E.P. Box, W.G. Hunter, J.S. Hunter, Statistics for experimenters: an introduction to design, data analysis and model building. New York: Wiley, (1978).
DOI: 10.1177/014662168000400313
Google Scholar
[19]
E. Azuara, C.I. Beristain, H.S. Garcia, Development of a Mathematical Model to Predict Kinetics of Osmotic Dehydration.J. Food Sci. Technol. 29 (4) (1992) 239-242.
Google Scholar
[20]
J.Crank, The Mathematics of Diffusion. 2. ed. Oxford: Clarendon, (1975).
Google Scholar
[21]
M.A. Khan, R.N. Shuklaa, S. Zaidi, Mass Transfer during Osmotic dehydration of Apple using Sucrose, Fructose and Maltodextrin SolutionIn:International congress on engineering and food, Athenas. Grecia, ICEF, (2011).
Google Scholar
[22]
N.L. Chin, S.P. Kek, Y.A. Yusof, Direct and indirect power ultrasound assisted pre-osmotic treatments in convective drying of guava slices. Food Bioprod Process. 91(4) (2013) 495-506.
DOI: 10.1016/j.fbp.2013.05.003
Google Scholar
[23]
X. Wang, Z. Gao, H. Xiao,Y. Wang, J. Bai, Enhanced mass transfer of osmotic dehydration and changes in microstructure of pickled salted eff under pulsed pressure. J. Food Eng. 117 (1) (2013) 141-150.
DOI: 10.1016/j.jfoodeng.2013.02.013
Google Scholar
[24]
P. Genina-Souto, J. Barrera-Cortes, G. Gutierrez-Lopez, E.A Nieto, Temperature and concentration effects of osmotic media on profiles of sweet potato cubes. Dry. Technol. 19 (3-4) (2011) 547-558.
DOI: 10.1081/drt-100103933
Google Scholar
[25]
A. H. Al-Muhtaseb, M. Al-Harahsheh, M. Hararah, T.R.A Magee, Drying charcteristics and quality change of unutilized-protein rich-tomato pomace with and without osmotic pre-treatment. Ind. Crops. Prod., 31,(1) (2010) 171-177.
DOI: 10.1016/j.indcrop.2009.10.002
Google Scholar
[26]
A. Heredia, I. Peinado, C. Barrera, A.A. Grau, Influence of process variables on colour changes, carotenoids retention and cellular tissue alteration of cherry tomato during osmotic dehydration. J. Food Compos. Anal. 22 (4) (2009) 285-294.
DOI: 10.1016/j.jfca.2008.11.018
Google Scholar
[27]
Y. Bekele, H. Ramaswamy, Going beyond conventional osmotic dehydration for quality advantage and energy savings. E.J.A.S.T.1 (1)(2010) 1–15.
Google Scholar
[28]
C.G. Schmidt, M. Salas-Mellado, Influence of alcalase and flavourzyme performance on the degree of hydrolysis of theproteins of chicken meat.Química Nova, 32 (5) (2009) 1144-1150. (In Portuguese).
DOI: 10.1590/s0100-40422009000500012
Google Scholar
[29]
J.R.J. Junqueira, J.L.G. Correa, K.S. Mendonça, Evaluation of the shrinkage effect of sweet potato.J. Food Process. Preserv. 41(3) (2017) 1-10.
Google Scholar
[30]
L.M. Pereira, C.C. Ferrari, S.D.S. Mastrantonio, A.C.C. Rodrigues, M.D. Hubinger, Kinetic aspects, texture, and color evaluation of some tropical fruits during osmotic dehydration. Dry. Technol. 24, (4) (2006) 475-484.
DOI: 10.1080/07373930600611968
Google Scholar
[31]
B. Sritongtae, T. Mahawanich, K. Duangmal, Drying of osmosed cantaloupe: Effect of polyols on drying and water mobility. Dry. Technol. 29(5) (2011) 527-535.
DOI: 10.1080/07373937.2010.513615
Google Scholar
[32]
D.S. Castro, W.P. Silva, J.P. Gomes, J.E.F. Aires, K.L.C.A.F Aires, A.F.S Junior, Development and sensory evaluation of osmotically dehydrated guava. Brazilian Journal of Food Technology. 21(e2016013) (2018)1-8. (In Portuguese).
Google Scholar
[33]
M. A. C. Silva, Z. E. Silva, V. C. Mariani, S. Darche, Mass transfer during the osmotic dehydration of West Indian cherry. LWT - Food Science and Technology. 45 (2) (2012) 246-252.
DOI: 10.1016/j.lwt.2011.07.032
Google Scholar
[34]
H.G. Ramya, S. Kumar, M. Kumar, Mass exchange evaluation during optimization of osmotic dehydration for oyster mushrooms (Pleurotussajor-caju) in salt-sugar solution.I.A.S.E.T.6 (1) (2014) 110-116.
DOI: 10.31018/jans.v6i1.384
Google Scholar
[35]
M.M. Alam, M.N. Islam, M.N. Islam, Effect of process parameters on the effectiveness of osmotic dehydration of summer onion. Int. Food Res.J. 20 (1) (2013)391-396.
Google Scholar
[36]
J.L.C.X. Góis, A.K.L. Costa, R.S.F. Filho, Study of the kinetics of osmotic dehydration of apple banana (Musa acuminata Colla x Musa balbisiana Colla, Group AAB). Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Norte, IFRN, Natal, Brazil.(2010) 1-8.
DOI: 10.33025/ceb.v5i3.3061
Google Scholar
[37]
L. Arias, Y. Perea, J.E. Zapata, Kinetic of the Mass Transfer Process in the Osmotic Dehydration of Mango (Mangiferaindica L.) var. Tommy Atkins as Function of the Temperature. InformaciónTecnológica. 28(3) (2017) 47-58.
Google Scholar
[38]
P.PSutar, S. Prasad, Modeling Mass Transfer Kinetics and Mass Diffusivity During Osmotic Dehydration of Blanched Carrots. Int. J. Food Eng.7 (4) (2011) 1556-3758.
DOI: 10.2202/1556-3758.2075
Google Scholar
[39]
M.M. Rodríguez, R.H. Mascheroni, A.M. Pagano, Nectarines dehydration (Prunus persica var. nectarine) in concentrated osmotic agents combined with hot air drying. 17th International Drying Symposium (IDS 2010) Magdeburg, Germany, 3-6 October.(2010) 1420-1422.
Google Scholar
[40]
H. Allali, L. Marchal, E. Vorobiev, Blanching of strawberries by ohmic heating: effects on the kinetics of mass transfer during osmotic dehydration. Food Bioprocess Tech. 3(3) (2008) 406-414.
DOI: 10.1007/s11947-008-0115-5
Google Scholar
[41]
O. Corzo, N. Bracho, C Alvarez, Water effective diffusion coefficient of mango slices at different maturity stages during air drying. J. Food Eng. 87 (4)(2008) 479–484.
DOI: 10.1016/j.jfoodeng.2007.12.025
Google Scholar
[42]
F.R. Assis, R.M.S.C. Morais, A.M.M.B. Moraes, Mathematical modelling of osmotic dehydration kinetics of apple cubes. J. Food Process. Pres. 41 (3) (2017) 1-16.
DOI: 10.1111/jfpp.12895
Google Scholar
[43]
F. Hamedi, M. Mohebbi, F. Shahidi, E. Azarpazhooh, Ultrasound-Assisted Osmotic Treatment of Model Food Impregnated with Pomegranate Peel Phenolic Compounds: Mass Transfer, Texture, and Phenolic Evaluations. Food Bioprocess Tech. 11(5)1061–1074 (2018).
DOI: 10.1007/s11947-018-2071-z
Google Scholar
[44]
E. Azarpazhooh, H.S. Ramaswamy, Modeling and Optimization of Microwave Osmotic Dehydration of Apple Cylinders Under Continuous-Flow Spray Mode Processing Conditions. Food and Bioprocess Technology. 5(5) (2012) 1486-1501.
DOI: 10.1007/s11947-010-0471-9
Google Scholar
[45]
R.N. Zúñiga, F. Pedreschi, Study of the pseudo-equilibrium during osmoticdehydration of apples and its effect on the estimation of water and sucrose effective diffusivity coefficients. Food Bioprocess Tech. 5 (7) (2012) 2717-2727.
DOI: 10.1007/s11947-011-0621-8
Google Scholar