Metal Adsorption in Biomass: Fundamentals and Application

Article Preview

Abstract:

In this chapter the adsorption fundamentals using biomass as adsorbents in the removal of metallic ions are presented. The research as shows the importance of many factors that affects the adsorption, such as the biomass superficial area, system temperature, pH, initial concentration of the metal, biomass amount and status (living or dead). The study was directed at the approach of two applications using Saccharomyces cerevisiae yeast in the adsorption of Cd2+ metal ions. In the first application it is discussed the influence of the pH of the medium and the biomass status (living or dead) in the adsorption of Cd2+, in batch. In the second application, it was studied the adsorption of Cd2+metallic ions through the Saccharomyces cerevisiae yeast immobilized in chitosan, in fixed bed, where the influence inlet mass flow rate and the initial effluent concentration on the adsorption capacity and percentage of Cd2+ ions removal are evaluated.The studies realized are supported by statistical analysis with 95% confidence intervals.

You might also be interested in these eBooks

Info:

Periodical:

Diffusion Foundations (Volume 25)

Pages:

154-167

Citation:

Online since:

January 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B. Volesky, Detoxification of metal-bearing effluents: biosorption for the next century. Hydrometallurgy, 59(2-3) (2001) 203-216.

DOI: 10.1016/s0304-386x(00)00160-2

Google Scholar

[2] K. Huang, Y. Xiu, H. Zhu, Removal of hexavalent chromium from aqueous solution by crosslinked mangosteen peel biosorbent. International Journal of Environmental Science and Technology, 12 (2015) 2485-2492.

DOI: 10.1007/s13762-014-0650-8

Google Scholar

[3] C. T. Tovar, E. Q. Bolãnos, L. T. Benitez, W. M. Bolivar, Orange Peels used for the Absorption of Hexavalent Chromium in Aqueous Solutions (Citrus sinensis). Producción+Límpia, 10(01) (2015) 9-21.

Google Scholar

[4] A. C. Gonçalves Junior, G. F. Coelho, D. Schwantes, A. L. Rech, M.A. Campagnolo, A. J. MIOLA, Biosorption of Cu(II) and Zn (II) with açaí endocarp Euterpe oleraceaM. in contaminated aqueous solution. Acta Scientiarum. Technology, 38(3) (2016) 361-370.

DOI: 10.4025/actascitechnol.v38i3.28294

Google Scholar

[5] P. A. S. Costa, C. M. Coelho, K. A. S. C. V. Riani, F. V. Luz, L. M. N. Almeida, C. R. Souza, J. S. Gonçalvez, C. M. F. Santos, Kinetic analysis and thermodynamic of the biosorption of Pb(II) in batch and without agitation using annatto shells. The Journal of engineering and Exact Sciences- JCEC., 04(02) (2018) 189-195. (In Portuguese).

Google Scholar

[6] T. Guimarães, Y. R. Oliveira, D. L. Polastrell, C. F. Barbosa, R. W. Silva, R. R. Passos, L. P. R. Profeto, D. Profeti, Study of the Adsorption of Cu (II) Using Eucalyptus Bark as a Biosorbent, Magazine Univap, 22(40) (2016) 177, Special Edition.

DOI: 10.18066/revistaunivap.v22i40.604

Google Scholar

[7] M. Marín-Castro, V. T. Flores, R. C. Vega, G. L. Fleites, Adsorption of Cu and Cd by the mycelial biomass of three strains of Pleurotus white rot fungus. Geominas, 43(67) (2015) 109-114.

Google Scholar

[8] L. M. Colla, A. Rossi, M, C. Deon, C. D. Magro, C. O. Reinehr, Biosorption of hexavalent chromium of effluent using agroindustrial residuals fermented by aspergillus strains. Science e Engineering Journal, 23(2) (2014) 67-74. (In Portuguese).

Google Scholar

[9] B. P. Conicelli, Biosorption of lead and mercury by the wild and recombinant lines of C. metallidurans in aqueous medium. Institute of Energy and Nuclear Research - IPEN- PhD dissertation (2017). (In Portuguese).

Google Scholar

[10] S. W. C. Araújo, M. F. C. S. Canuto, R. C. O. Duarte, L. S. C. Oliveira, O. L. S. Alsina, Biosorption of Cu2 + Ion in Fluidized Bed by Saccharomyces cerevisiae Yeast Immobilized in Chitosan (In Portuguese). In: Brazilian Congress of Chemical Engineering, Florianópolis. XX Brazilian Congress of Chemical Engineering, 2014. (In Portuguese).

Google Scholar

[11] D. M. Ruthven, Principles of Adsorption and Adsorption Process. University of New Brunswick, Fredericton. John Wiley & Sons, U.S.A. (1984).

Google Scholar

[12] F. L. Lavarda, Biosorption Potential Study of Cd (II), Cu (II) and Zn (II) by the macrophyte Eichhorniacrassipes. Master Dissertation in Chemical Engineering, West Paraná, State University, (2010).

Google Scholar

[13] B. Volesky, Z. R. Holan, Biosorption of heavy metals. Biotechnol. Prog. Washington, 11 (1995) 235-250.

DOI: 10.1021/bp00033a001

Google Scholar

[14] I. P. A. F. Souza, A. L. Cazetta, O. Pezoti, V. C. Almeida, Preparation of biosorbents from the Jatoba (Hymenaeacourbaril) fruit shell removal of Pb (II) and Cd(II) from aqueous solution. Environmental Monitoring and Assessment, 189 (632) (2017) 1-16.

DOI: 10.1007/s10661-017-6330-7

Google Scholar

[15] E. B. Son, K. M. Poo, J, S. Chang, K. J. Chae, Heavy metal removal from aqueous solutions using engineered magnetic biochars derived from waste marine macro-algal biomass. Science of Total Environment, 615 (2018) 161-168.

DOI: 10.1016/j.scitotenv.2017.09.171

Google Scholar

[16] A. Ahmad, A. H. Bhat, A. Buang, Biosorption of transition metals by freelysuspended and Ca-alginate immobilized with Chlorella vulgaris: kinetic and equilibrium modeling. Journal of Cleaner Production, 171(2018) 361-1375.

DOI: 10.1016/j.jclepro.2017.09.252

Google Scholar

[17] Jr. D. Palin, K. B. Rufato, G. A. Linde, N. B. Colauto, J. Caetano, O. Alberton, D. A. Jesus, D. C. Dragunski, Evaluation of Pb (II) biosorptionutilizing sugarcane bagasse colonized by Basidiomycetes. Environmental Monitoring and Assessment, 188(297) (2016) 1-14.

DOI: 10.1007/s10661-016-5257-8

Google Scholar

[18] M. F. C. S. Canuto, S. W. C. Araújo, R. C. O. Duarte, O. L. S, Alsina, L. S. O. Conrado, Removal of the cadmium ion by biosorption process in a fixed bed column using yeast immobilized on chitosan. Proceedings of the 10th Brazilian Meeting on Adsorption. Guarujá - SP, (2014) CD Rom (In Portuguese).

Google Scholar

[19] K. Vijayaraghavan, M. W. Lee, Y. S. Yun, Evaluation of fermentation waste (Corynebacterium glutamicum) as a biosorbent for the treatment of nickel(II)- bearing solutions. Biochemical Engineering Journal, 41(2008) 228-233.

DOI: 10.1016/j.bej.2008.04.019

Google Scholar

[20] H. Khakpour, H. Youseni, M, Mohammadshosseini, Two-stage biosorption of selenium from aqueous solution using dried biomass of the bakers's yeast Saccharomyces cerevisiae. Journal of Environmental Chemical Engineering, 2 (2014) 532-542.

DOI: 10.1016/j.jece.2013.10.010

Google Scholar

[21] J. Wang, C. Chen, Biosorption of heavy metals by Saccharomyces cerevisiae: a review. Biotechnology Advances, 24 (5) (2006) 427-451.

DOI: 10.1016/j.biotechadv.2006.03.001

Google Scholar

[22] R. H. S. F. Vieira, B. Volesky, Biosorption: a solution to pollution? International Microbiology, 3 (2000) 17-24.

Google Scholar

[23] M. Gohari, S. N. Hosseini, S. Sharifnia, M. Khatami, Enhancement of metal ion adsorption capacity of S. cerevisiae's cells by using disruption method. Journal of the Taiwan Institute of Chemical Engineers. V. 44. pp.637-645, (2013).

DOI: 10.1016/j.jtice.2013.01.002

Google Scholar

[24] S. Xin, Z. Zeng, X. Zhou, W. Luo, X. Shi, Q. Wang, Y. Du, Recyclabe Saccharomyces cerevisiae loaded nanofibrous mats with sandwich structure constructing via bio-electrospraying for heay metal removal. Journal of Hazardous Materials, 324, (2017) 365-372.

DOI: 10.1016/j.jhazmat.2016.10.070

Google Scholar

[25] S. Amirnia, M, B. Ray, A. Margaritis, Heavy metals removal from aqueous solutions using Saccharomyces cerevisiae in a novel continuous bioreactor-biosorption system. Chemical Engineering Journal, 264. (2015) 863-872.

DOI: 10.1016/j.cej.2014.12.016

Google Scholar

[26] R. Malik, S. Iata, An experimental and quantum chemical study of removal of utmostly quantified heavy metals in wastewater using coconut husk: A novel approach to mechanism. International Journal of Biological Macromolecules, 98 (2017a.) 139-149.

DOI: 10.1016/j.ijbiomac.2017.01.100

Google Scholar

[27] M. Sekar, V. Sakthi, S. Rengaraj, Kinetics and equilibrium adsorption study of lead (II) onto activated carbon prepared from coconut shell. Journal of colloid and interface science, 279(2) (2004) 307-313.

DOI: 10.1016/j.jcis.2004.06.042

Google Scholar

[28] R. Jimenez, S. Bosco, W. Carvalho, Heavy metals removal from wastewater by the natural zeolite scolecite - temperature and pH influence in single-metal solutions. Química Nova, 27(5) (2004) 734-738. (In Portuguese).

Google Scholar

[29] C. Appel, L. Ma, R. Dean Rhue, E. Kennelley, Point of zero charge determination in soils and minerals via traditional methods and detection of electroacoustic mobility. Geoderma, 113(1) (2003) 77-93.

DOI: 10.1016/s0016-7061(02)00316-6

Google Scholar

[30] A. Rossi, Biosorption of toxic metals by Saccharomyces cerevisiae. 95 f. Master Dissertation in Engineering - Passo Fundo University, Passo Fundo, (2015). (In Portuguese).

DOI: 10.47593/2675-312x/20213401eabc152

Google Scholar

[31] V. K. Gupta, A. Rastogi, A. Nayak, Adsorption studies on the removal of hexavalent chromium from aqueous solution using a low-cost fertilizer industry waste material. Journal of Colloid and Interface Science, 342 (2010) 135-141.

DOI: 10.1016/j.jcis.2009.09.065

Google Scholar

[32] J. L. B. C, Silva, L. Pequeno, L. K. S. Rocha, E. C. O. Araújo, T. A. R. Marciel, A. J. M. Barros, Biosorption of heavy metals: a review. Revista Saúde e Ciência Online, 3(3) (2014) 137-149. (In Portuguese).

Google Scholar

[33] J. L. Sotelo, A. Rodríguez, J. García, Removal of caffeine and diclofenac on activated carbon in fixed bed column,. Chemical Engineering Research and Design, 90 (7) (2012) 967-974.

DOI: 10.1016/j.cherd.2011.10.012

Google Scholar

[34] K. J. Cronje, M. Chetty, J. N. Carsky, B. C. Sahu, Optimization of chromium(vi) sorption potential using developed activated carbon from sugarcane bagasse with chemical activation by zinc chloride. Desalination. 275(1-3) (2011) 276–284.

DOI: 10.1016/j.desal.2011.03.019

Google Scholar

[35] M. Dutta, U. Das, S. Mondal, S. Bhattachriya, R. Khatun, R. Bagal, Adsorption of acetaminophen by using tea waste derived activated carbon. International Journal of Environmental Sciences, 6(2), (2015) 270–281.

Google Scholar

[36] M, H. Isa, N, Ibrahim, H. A. Aziz, M. N. Adlan, N. H. M. Sabiani, A. A. L. Zinatizadeh, S. R. M. Kutty, Removal of chromium (VI) from aqueous solute ion using treated oil palm fibre. Journal of Hazardous Materials, 152(2) (2008) 662-668.

DOI: 10.1016/j.jhazmat.2007.07.033

Google Scholar

[37] H. Salehizadeh, S. A. Shojaosadati, Removal of metal íons from aqueous solution by polysaccharide produced from Bacillus firmus. Water Research 37 (2003) 4231-4235.

DOI: 10.1016/s0043-1354(03)00418-4

Google Scholar

[38] G. M. GADD, C. WHITE, Biosorption of radionuclides by yaest and fungal biomass. J. Chem. Technol. Biotechnol, 49 (1990) 331-343.

DOI: 10.1002/jctb.280490406

Google Scholar

[39] M. F. C. S. Canuto, Removal of the Cd2 + ion by biosorption process in fixed bed, PhD Thesis. UFCG, Campina Grande - PB (2012). (In Portuguese).

Google Scholar

[40] M. C. Ribas, R. Canevesi, E. A. Silva, A study of the equilibrium and the dynamics of biosorption of the cadmium ion by the macrophyte Lemna minor in fixed bed column. Engevista, Rio de Janeiro, 14(2) (2012)143-154.

Google Scholar