p.1
p.31
p.75
p.95
p.117
p.143
p.161
p.179
Techniques of Tracer Diffusion Measurements in Metals, Alloys and Compounds
Abstract:
Tracer diffusion is one of most reliable techniques for providing basic kinetic data in solids. In the present review, selected direct methods, in particular the radiotracer measurements as a superior technique due to its high sensitivity, Secondary-Ion-Mass-Spectroscopy (SIMS) profiling, X-Ray Diffraction measurements and Rutherford Backscattering Spectrometry are presented and discussed. Special attention is put on the radiotracer technique describing the currently used sectioning techniques in detail with a focus on the experimental applications and complications. The relevant experimental results are exemplary shown. Furthermore, the most recent developments and advances related to the combined tracer/inter-diffusion measurements are highlighted. It is shown that this approach offers possibilities to provide the concentration-dependent tracer diffusion coefficients of the constituting elements in multi-component alloys in high-throughput experiments. Possibilities of estimating the tracer diffusion coefficients following different types of diffusion couple methods in binary and multicomponent systems are briefly introduced. Finally, specificity of SIMS analysis of diffusion in fine-grained materials are carefully analyzed. If applicable, a direct comparison of the results obtained by different techniques is given.
Info:
Periodical:
Pages:
31-73
DOI:
Citation:
Online since:
April 2021
Price:
Сopyright:
© 2021 Trans Tech Publications Ltd. All Rights Reserved
Citation:
* - Corresponding Author
[1] A. Paul, T. Laurila, V. Vuorinen and S.V. Divinski: Thermodynamics, Diffusion and the Kirkendall Effect in Solids (Springer Int. Publ., Switzerland, 2014).
[2] A. Mehta and Y. Sohn, Fundamental Core effects in Transition Metal High-Entropy Alloys: High-Entropy" and "Sluggish Diffusion" effects, Diffusion Foundations (2021) (this issue "Real and Computational Experiments in Diffusion,).
[3] Md. Afikuzzaman, I. V. Belova, and G. E. Murch, Novel Interdiffusion Analysis in Multicomponent Alloys, Diffusion Foundations (2021) (this issue Real and Computational Experiments in Diffusion,).
[4] J. Groh and G.K. von Hevesy: Annalen der Physik Vol. 63 (1920) p.85.
[5] J. Groh and G.K. von Hevesy: Annalen der Physik Vol. 65 (1921) p.216.
[6] H. Mehrer and G.E. Murch, History and People of Solid-state Diffusion - an Overview, Diffusion Foundations (2021) (this issue Real and Computational Experiments in Diffusion,).
[7] H. Mehrer: Diffusion in solids(Springer International Publishing, Germany 2007).
[8] J. Crank: The mathematics of diffusion (Clarendon Press, Oxford, 1975).
[9] S.V. Divinski, F. Hisker, Y.-S. Kang, J.-S. Lee and Chr. Herzig: Z. Metallkde. Vol. 93 (2002) pp.256-265.
[10] S.V. Divinski, F. Hisker, Y.-S. Kang, J.-S. Lee and Chr. Herzig: Z. Metallkde. Vol. 93 (2002) pp.265-274.[11] S.V. Divinski, F. Hisker, Y.S. Kang, J.S. Lee and Chr. Herzig: Interface Sci. Nr. 11 (2003) pp.67-80.
[12] Y. Amouyal, S. Divinski, Y. Estrin and E. Rabkin: Acta Mater Vol. 55 (2007) pp.5968-5979.
[13] P.L. Gruzin: Doklady Akademii Nauk SSSR Vol. 86 (1952) p.289.
[14] V. Rothová: Nuclear Instruments and Methods in Physics Research A Vol. 729 (2013) pp.702-706.
[15] J.R. Manning: Phys. Rev. Vol. 116 (1959) pp.819-827.
[16] L. Darken: Trans. Am. Inst. Min. (metall.) Engrs. (1948), p.184.
[17] J.R. Manning and L.J. Bruner: Am. J. Phys. Vol. 36 (1968) pp.922-923.
[18] I.V. Belova, N.S Kulkarni, Y. Sohn, and G.E. Murch, Philosophical Magazine 94 (2014) pp.3560-3573.
[19] I.V. Belova, Y.H. Sohn and G.E. Murch: Philos. Mag. Lett. Vol. 95 (2015) pp.416-424.
[20] I.V. Belova, D. Heuskin, E. Sondermann, B. Ignatzi, F. Kargl, G.E. Murch, and A. Meyer, Scripta Materialia 143 (2018) pp.40-43.
[21] E.A. Schulz, A. Mehta, I.V. Belova, G.E. Murch, and Y. Sohn, J. Phase Equilib. Diffus. 39 (2018) pp.862-869.
[22] D. Liu, D. Huang, S. Liu, Y. Du, and S.V. Divinski, JALCOM 720 (2017) pp.332-339.
[23] D. Gaertner, K. Abrahams, J. Kottke, V.A. Esin, I. Steinbach, G. Wilde and S.V. Divinski: Acta Mater Vol. 166 (2019) pp.357-370.
[24] S.J. Rothman, The Measurement of Tracer Diffusion Coefficients in Solids, in: Diffusion in Crystalline Solids, edited by G.E. Murch and A.S. Nowick, Academic Press, Orlando, Fl (1984).
[25] J. Ribbe, D. Baither, G. Schmitz, and S.V. Divinski, Phys. Rev. Lett. 102 (2009) 165501.
[26] Chr. Herzig, U Köhler, and S.V. Divinski, J. Appl. Phys. 85 (1999) 8119.
[27] Chr. Herzig, J. Geise, and S.V. Divinski, Z. Metallkde., 93 (2002) 12.
[28] L. G. Harrison: Trans. Faraday Soc. Vol. 57 (1961), pp.1191-1199.
[29] F. Wenwer: Weiterentwicklung und Automatisierung der ionenstrahlzerstäubungstechnik für Diffusionsexperimente und Untersuchungen zum Mechanismus der Kobaltdiffusion in Niob(Institute for Materials Physics, WWU Münster, Germany 1994).
[30] F. Wenwer, A. Gude, G. Rummel, M. Eggersmann, T. Zumkley, N.A. Stolwijk and H. Mehrer: Meas. Sci. Technol. Vol. 7 (1996) pp.632-640.
[31] R. Catherall, W. Andreazza, M. Breitenfeldt, A. Dorsival, G.J. Focker, T.P. Gharsa, T.J. Glies, J.-L. Grenard, F. Locci and P. Martins, S. Marzari, J. Schipper, A. Shornikov and T. Stora: J. Phys. G: Nucl. Part. Phys. Vol. 44 (2017) p.094002.
[32] K. Johnston, J. Schell, J.G. Correia, M. Deicher, H.P. Gunnlaugsson, A.S. Fenta, E. David-Bosne, A.R.G. Costa and D.C. Lupascu: J. Phys. G: Nucl. Part. Phys. Vol. 44 (2017) p.104001.[33] H. Wolf, F. Wagner, T. Wichert and ISOLDE collaboration: DDF Vol. 237-240 (2005) pp.491-498.
[34] F. Hergemöller, M. Wegner, M. Deicher, H. Wolf, F. Brenner, H. Hutter, R. Abart and N.A. Stolwijk: Phys. Chem. Min. Vol. 44 (2017) pp.345-351.
[35] D. Gaertner, J. Kottke, Y. Chumlyakov, G. Wilde and S.V. Divinski: J. Mater. Res. Vol. 33 (2018) pp.3184-3191.
DOI: 10.1557/jmr.2018.162
[36] Y. Iijima, K. Kimura and K. Hirano: Proc. 10th Symp. Ion Sources and Ion-Assisted Technology (Ionics, Tokyo, 1986) pp.297-302.
[37] Y. Iijima, K. Yamada, H. Katoh, J.-K. Kim and K. Hirano: 13th Symp. Ion Sources and IonAssisted Technology (Ionics, Tokyo, 1990) pp.179-182.
[38] Y. Iijima, H. Nitta, R. Nakamura, K. Takasawa, A. Inoue, S. Takemoto and Y. Yamazaki: J. Inst. Met. Vol. 69 (2005) pp.321-331.
[39] N. Oono, H. Nitta and Y. Iijima: Mater. Trans. Vol. 44 (2003) pp.2078-2083.
[40] S. Takemoto, H. Nitta, Y. Iijima and Y. Yamazaki: Phil. Mag. Vol. 87 (2007) pp.1619-1629.
[41] H. Nitta, K. Miura, and Y. Iijima: Acta Mater Vol. 54 (2006) pp.2833-2847.
[42] R.A. Pérez, F. Dyment, D. Abriola, G. García Bermudez and H. Somacal: J. Nucl. Mater. Vol. 186 (1992) pp.206-208.
[43] R.A. Pérez, F. Dyment, G. García Bermúdez, H. Somacal and D. Abriola: J. Nucl. Mater. Vol. 207 (1993) pp.221-227.
[44] M. Behar, F. Dyment, R.A. Pérez, J.H.R. dos Santos, R.L. Maltez and E.J. Savino: Phil. Mag. A Vol. 63 (1991) pp.967-972.
[45] M. Behar, M.R.F. Soares, F. Dyment, R.A. Pérez and S. Balart: Phil. Mag. A Vol. 80 (2000) pp.1319-1334.
[46] M. Behar, J.H.R. dos Santos, F. Bernardi and F. Dyment: DDF Vol. 213-215 (2003) pp.1-18.
[47] K.W. Chu, J.W. Mayer and M.A. Nicolet: Backscattering Spectrometry (Academic Press, New York, 1978).
[48] W.K. Chu and J.R. Liu: Mat. Chem. Phys. Vol. 46 (1996) pp.183-188.
[49] R.A. Pérez and F. Dyment: Appl. Phys. A Vol. 68 (1999) p.667.
[50] J. Kučera: J. Phys. B Vol. 14 (1964) pp.914-922.
[51] R.E. Pawel and T.S. Lundy: J. Electrochem. Soc. Vol. 115 (1968) p.233.
[52] N.M Stewart, E.D. Jones and J.B. Mullin: J. Mater. Sci. Vol. 3 (1992) pp.211-217.
[53] T.T. Shun and Y.C. Du: J. Alloys Compd. Vol. 479 (2009) pp.157-160.
[54] M.J. Yao, K.G. Pradeep, C.C. Tasan and D. Raabe: Scripta Mater Vol. 72-72 (2014) pp.5-8.
[55] Y. Deng, C.C. Tasan, K.G. Pradeep, H. Springer, A. Kostka and D. Raabe: Acta Mater Vol. 94 (2015) pp.124-133.[56] B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George and R.O. Ritchie: Science Vol. 345 (2014) pp.1153-1158.
[57] S. Rajasekhara, L.P. Karjalainen, A. Kyröläinen and P.J. Ferreira: Advanced Steels (2011) pp.371-384.
[58] S.V. Divinski, F. Hisker, Chr. Klinkenberg and Chr. Herzig: Intermetallics Vol. 14 (2006) pp.792-799.
[59] S.V. Divinski, C. Klinkenberg, Chr. Herzig, Tracer diffusion of niobium and titanium in binary and ternary titanium aluminides, J. Phase Equilibria Diffusion 26 (2005) 452-457.
[60] M. Vaidya, S. Sen, X. Zhang, L. Frommeyer, L. Rogal, S. Sankaran, B. Grabowski, G. Wilde, S.V. Divinski, Acta Mater. 196 (2020) pp.220-230.
[61] M.-M. Bé, V. Chisté, C. Dulieu, X. Mougeot, V.P. Chechev, N.K. Kuzmenko, F.G. Kondev, A. Luca, M. Galán, A.L. Nichols, A. Arinc, A. Pearce, X. Huang and B. Wang: Table of Radionuclides(BIPM, 2011).
[62] J.F. Ziegler, D. Ziegler J.P and Biersack: Nucl. Instrum. Methods. Phys. Res. B Vol. 268 (2010) pp.1818-1823.
[63] A. Strohm, T. Voss, W. Frank, P. Laitinen and J. Räisänen: Zeitschrift fuer Met. Res. Adv. Tech. Vol. 93 (2002) pp.737-744.
[64] D. Gaertner, G. Wilde and S.V. Divinski: Acta Mater Vol. 127 (2017) pp.407-415.
[65] R.T.P. Whipple: Philos. Mag. J. Sci. Vol. 45 (1954) pp.1225-1236.
[66] S. Divinski, M. Lohmann and Chr. Herzig: Acta Mater Vol. 49 (2001) pp.249-261.
[67] T. Suzuoka: J. Phys. Soc. Japan Vol. 19 (1964) pp.839-851.
[68] H. S. Levine and C. J. MacCallum: J. Appl. Phys. Vol. 31 (1960) pp.595-599.
[69] A. D. Le Claire: Br. J. Appl. Phys. Vol. 14 (1963) pp.351-356.
[70] G.M. Muralikrishna, B. Tas, N. Esakkiraja, V.A. Esin, K.C. Hari Kumar, I.S. Golovin, I.V. Belova, G.E. Murch, A. Paul and S.V. Divinski: Acta Mater Vol. 203 (2021) p.116446.
[71] A. Paul, Phil. Magazine 93 (2013) pp.2297-2315.
[72] A. Paul, A pseudobinary approach in multicomponent interdiffusion, arXiv:1509.04460 [condmat.mtrl-sci].
[73] N. Esakkiraja and A. Paul, Scripta Mater. 147 (2018) pp.79-82.
[74] N. Esakkiraja, K. Pandey, A. Dash and A. Paul, Phil. Magazine 99 (2019) pp.2236-2264.
[75] F. Sauer and V. Freise: Zeitschrift für Elektrochemie Vol. 66 (1962) pp.353-362.
[76] J.R. Manning. Phys. Rev. B Vol. 4 (1971) pp.1111-1121.
[77] B. Sundman, B. Jansson and J.O. Andersson: Calphad Vol. 9 (1985) pp.153-190.
[78] F.J.J. van Loo, Acta Met. 18 (1970) pp.1107-1111.
[79] A. Paul, A.A. Kodentsov and F.J.J. van Loo, Acta Materialia 52 (2004) pp.4041-4048.[80] A. Paul, A.A. Kodentsov and F.J.J. van Loo, Journal of Alloys and Compounds 403 (2005) pp.147-153.
[81] J.F. Cornet, J. Phys. Chem. Solids 35 (1974) pp.1247-1252.
[82] J. Levasseur and J. Philibert, J. Phys. Stat. Sol. B, 21 (1967) pp. K1-K4.
[83] M.J.H. van Dal, M.C.L.P. Pleumeeres, A.A. Kodenstov and F.J.J. van Loo, Acta Met. 48 (2000) pp.385-396.
[84] V.D. Divya, U. Ramamurty and A. Paul, Defects Diffusion Forum 312-315 (2011) pp.466-471.
[85] V.D. Divya, U. Ramamurty and A. Paul, J Materials Research 26 (2011) pp.2384-2393.
[86] A. Paul, A.A. Kodentsov, G. de With, F.J.J. van Loo, Intermetallics 11 (2003) 1195-1203.
[87] V.A. Baheti, S. Kashyap, P. Kumar, K. Chattopadhyay, and A. Paul, Philosophical Magazine 98 (2018) pp.20-36.
[88] V.A. Baheti, S. Kashyap, P. Kumar, K. Chattopadhyay, and A. Paul, Acta Materialia 131 (2017) pp.260-270.
[89] C. Ghosh and A. Paul, Acta Materialia 57 (2009) pp.493-502.
[90] V.A. Baheti and A. Paul, Acta Materialia 156 (2018) 420-431.
[91] S. Prasad and A. Paul, Acta Materialia 59 (2011) 1577-1585.
[92] M. Salamon, A. Strohm, T. Voss, P. Laitinen, I. Riihimäki, S. Divinski, et al. Phil Mag, 84 (2004), p.737.
[93] S. Prasad and A. Paul, Intermetallics 19 (2011) 1191-1200.
[94] V.A. Baheti, S. Kashyap, P. Kumar, K. Chattopadhyay, and A. Paul, Philosophical Magazine 97 (2017) pp.1782-1802.
[95] Y. Iijima, Y. Wakabayashi, T. Itoga and K. Hirano, Mater. Trans. JIM 32 (1991) pp.457-464.
[96] Y. Minamino, T. Yamane, T. Kimura and T. Takahashi, J. Mater. Sci. Lett 7 (1988) p.365.
[97] Y. Minamino, S.B. Jung, T. Yamane and K. Hirao, Metall. Trans. A 23 (1992( pp.2783-2790.
[98] F.O. Shuck and H.L. Toor, J. Phys. Chem. 67 (1963) pp.540-545.
[99] S.B. Jung, Y. Minamino, H. Araki, T. Yamane, K. Hirao and S. Saji, Defect Diff. Forum 95-98 (1993) pp.859-864.
[100] A. Dash, N. Esakkiraja and A Paul, Acta Materialia 193 (2020) pp.163-171.
[101] N Esakkiraja, A Dash, A Mondal, KC Kumar, A Paul, Materialia (2021) (in press).
[102] D. Gaertner, J. Kottke, Y. Chumlyakov, F. Hergemöller, G. Wilde and S.V. Divinski, Scripta Materialia 187 (2020) pp.57-62.
[103] J.E. Morral, J Phase Equilibria Diffusion 39 (2018) p.51--56.
[104] N.S. Kulkarni, R.J. Bruce Warmack and B. Radhakrishnan: J. Phase Equilib. Diffus. Vol. 35 (2014) pp.762-778.[105] St. Frank, S.V. Divinski, U. Södervall and Chr. Herzig: Acta Mater Vol. 49 (2001) pp.1399-1411.
[106] S.V. Divinski, G. Reglitz, H. Rösner, Y. Estrin and G. Wilde: Acta Mater Vol. 59 (2011) pp.1974-1985.
[107] X. Sauvage, G. Wilde, S.V. Divinski, Z. Horita and R.Z. Valiev: Mat. Sci. Eng. A Vol. 540 (2012) pp.1-12.
[108] G. Wildea and S.V. Divinski: Mater. Trans. Vol. 60 (2019) pp.1302-1315.
[109] D. Prokoshkina, L. Klinger, A. Moros, G. Wilde, E. Rabkin and S.V. Divinski: Acta Mater Vol. 69 (2014) pp.314-325.
[110] S.V. Divinski, G. Reglitz and G. Wilde: Acta Mater Vol. 58 (2010) pp.386-395.
[111] P. Van der Heide: Secondary ion mass spectrometry: an introduction to principles and practices. (John Wiley & Sons, 2014).
[112] S. M. Daiser, C. Scholze and J.L. Maul: Nuc. Ins. and Meth. in Phys. Res. Sec. B Vol. 35 (1988) pp.544-549.
[113] G. Wehner: J. of Vac. Sci. & Tech. A. Vol. 1 (1983) pp.487-490.
[114] F. Stevie: Secondary ion mass spectrometry: Applications for depth profiling and surface characterization (Momentum Press, 2015).
[115] J. F. Ziegler: Nuc. Inst. and Meth. in Phys. Res. Sec. B. Vol. 219-220 (2004) pp.1027-1036.
[116] R.E. Stoller, M.B. Toloczko, G.S. Was, A.G. Certain, S. Dwaraknath and F.A. Garner: Nuc. Inst. and Meth. in Phys. Res. Sec. B. Vol. 310 (2013) pp.75-80.
[117] Z. Jiang and P. Alkemade: Surf. and Interf. Anal. Vol. 27 (1999) pp.125-131.
[118] K. Wittmaack: Surf. and Interf. Anal. Vol. 24 (1996) pp.389-398.
[119] A. Benninghoven, F. Rudenauer and H.W. Werner: Secondary ion mass spectrometry: basic concepts, instrumental aspects, applications and trends (Wiley, New York, 1987).
[120] J. Hunter and M. Fayek: Secondary Ion Mass Spectrometry in the Earth Sciences: Gleaning the big picture from a small spot Vol. 41 (2009) pp.133-148.
[121] A. Portavoce, K. Hoummada and L. Chow: Microscopy and Microanalysis. Vol. 25 (2019) pp.517-523.
[122] T. Südkamp, H. Bracht, G. Impellizzeri, J. Lundsgaard Hansen, A. Nylandsted Larsen and E. Haller: Applied Physics Letters. Vol. 102 (2013) p.242103.
DOI: 10.1063/1.4811442
[123] P. Williams and L.A. Streit: Nuc. Inst. and Meth. in Phys. Res. Sec. B. Vol. 15 (1986) pp.159-164.
[124] R.L. Fogel'son, Ya.A. Ugai, A.V. Pokoev, and I.A. Akimova: Soviet Solide State Pjhysics Vol. 13 (1971) pp.856-858.
[125] A.V. Pokoev, V.M. Mironov, and L.K. Kudryavceva: Proceedings of Higher Educational Institutions. Non-ferrous metallurgy Vol. 2 (1976) pp.130-134 (in Russian).[126] J. Bernardini and J. Cabane: Acta Metall. Vol. 21 (1973) p.1571.
[127] R. L. Fogelson, Ya. A. Ugai, and A.V. Pokoev: Physics of Metals and Materials Science Vol. 33 (1972) pp.1102-1103. (in Russian).
[128] R. L. Fogelson, Ya. A. Ugai, and A.V. Pokoev: Proceedings of Higher Educational Institutions. Non-ferrous metallurgy Vol. 3 (1973) pp.143-144. (in Russian).
[129] R. L. Fogelson, J. A. Ugai, and A.V. Pokoev: Physics of Metals and Materials Science Vol. 35 (1973) pp.1307-1309. (in Russian).
[130] A.A. Fedotov, A.V. Pokoev, and S.V. Divinski: Defect Diffusion Forum Vol. 383 (2018) pp.185-189.
[131] A.V. Pokoev, A.A. Fedotov, and S.V. Divinski, Bulletin of the Russian Academy of Sciences: Physics Vol 83 (2019) pp.1529-1532.
[132] G.B. Stephenson, Acta metall. 36 (1988) pp.2663-2683.