Techniques of Tracer Diffusion Measurements in Metals, Alloys and Compounds

Article Preview

Abstract:

Tracer diffusion is one of most reliable techniques for providing basic kinetic data in solids. In the present review, selected direct methods, in particular the radiotracer measurements as a superior technique due to its high sensitivity, Secondary-Ion-Mass-Spectroscopy (SIMS) profiling, X-Ray Diffraction measurements and Rutherford Backscattering Spectrometry are presented and discussed. Special attention is put on the radiotracer technique describing the currently used sectioning techniques in detail with a focus on the experimental applications and complications. The relevant experimental results are exemplary shown. Furthermore, the most recent developments and advances related to the combined tracer/inter-diffusion measurements are highlighted. It is shown that this approach offers possibilities to provide the concentration-dependent tracer diffusion coefficients of the constituting elements in multi-component alloys in high-throughput experiments. Possibilities of estimating the tracer diffusion coefficients following different types of diffusion couple methods in binary and multicomponent systems are briefly introduced. Finally, specificity of SIMS analysis of diffusion in fine-grained materials are carefully analyzed. If applicable, a direct comparison of the results obtained by different techniques is given.

You might also be interested in these eBooks

Info:

Periodical:

Diffusion Foundations (Volume 29)

Pages:

31-73

Citation:

Online since:

April 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Paul, T. Laurila, V. Vuorinen and S.V. Divinski: Thermodynamics, Diffusion and the Kirkendall Effect in Solids (Springer Int. Publ., Switzerland, 2014).

DOI: 10.1007/978-3-319-07461-0

Google Scholar

[2] A. Mehta and Y. Sohn, Fundamental Core effects in Transition Metal High-Entropy Alloys: High-Entropy" and "Sluggish Diffusion" effects, Diffusion Foundations (2021) (this issue "Real and Computational Experiments in Diffusion,).

DOI: 10.4028/www.scientific.net/df.29.75

Google Scholar

[3] Md. Afikuzzaman, I. V. Belova, and G. E. Murch, Novel Interdiffusion Analysis in Multicomponent Alloys, Diffusion Foundations (2021) (this issue Real and Computational Experiments in Diffusion,).

DOI: 10.4028/www.scientific.net/df.29.161

Google Scholar

[4] J. Groh and G.K. von Hevesy: Annalen der Physik Vol. 63 (1920) p.85.

Google Scholar

[5] J. Groh and G.K. von Hevesy: Annalen der Physik Vol. 65 (1921) p.216.

Google Scholar

[6] H. Mehrer and G.E. Murch, History and People of Solid-state Diffusion - an Overview, Diffusion Foundations (2021) (this issue Real and Computational Experiments in Diffusion,).

DOI: 10.4028/www.scientific.net/df.29.1

Google Scholar

[7] H. Mehrer: Diffusion in solids(Springer International Publishing, Germany 2007).

Google Scholar

[8] J. Crank: The mathematics of diffusion (Clarendon Press, Oxford, 1975).

Google Scholar

[9] S.V. Divinski, F. Hisker, Y.-S. Kang, J.-S. Lee and Chr. Herzig: Z. Metallkde. Vol. 93 (2002) pp.256-265.

Google Scholar

[10] S.V. Divinski, F. Hisker, Y.-S. Kang, J.-S. Lee and Chr. Herzig: Z. Metallkde. Vol. 93 (2002) pp.265-274.[11] S.V. Divinski, F. Hisker, Y.S. Kang, J.S. Lee and Chr. Herzig: Interface Sci. Nr. 11 (2003) pp.67-80.

DOI: 10.1023/a:1021587007368

Google Scholar

[12] Y. Amouyal, S. Divinski, Y. Estrin and E. Rabkin: Acta Mater Vol. 55 (2007) pp.5968-5979.

DOI: 10.1016/j.actamat.2007.07.026

Google Scholar

[13] P.L. Gruzin: Doklady Akademii Nauk SSSR Vol. 86 (1952) p.289.

Google Scholar

[14] V. Rothová: Nuclear Instruments and Methods in Physics Research A Vol. 729 (2013) pp.702-706.

Google Scholar

[15] J.R. Manning: Phys. Rev. Vol. 116 (1959) pp.819-827.

Google Scholar

[16] L. Darken: Trans. Am. Inst. Min. (metall.) Engrs. (1948), p.184.

Google Scholar

[17] J.R. Manning and L.J. Bruner: Am. J. Phys. Vol. 36 (1968) pp.922-923.

Google Scholar

[18] I.V. Belova, N.S Kulkarni, Y. Sohn, and G.E. Murch, Philosophical Magazine 94 (2014) pp.3560-3573.

Google Scholar

[19] I.V. Belova, Y.H. Sohn and G.E. Murch: Philos. Mag. Lett. Vol. 95 (2015) pp.416-424.

Google Scholar

[20] I.V. Belova, D. Heuskin, E. Sondermann, B. Ignatzi, F. Kargl, G.E. Murch, and A. Meyer, Scripta Materialia 143 (2018) pp.40-43.

DOI: 10.1016/j.scriptamat.2017.09.003

Google Scholar

[21] E.A. Schulz, A. Mehta, I.V. Belova, G.E. Murch, and Y. Sohn, J. Phase Equilib. Diffus. 39 (2018) pp.862-869.

DOI: 10.1007/s11669-018-0682-8

Google Scholar

[22] D. Liu, D. Huang, S. Liu, Y. Du, and S.V. Divinski, JALCOM 720 (2017) pp.332-339.

Google Scholar

[23] D. Gaertner, K. Abrahams, J. Kottke, V.A. Esin, I. Steinbach, G. Wilde and S.V. Divinski: Acta Mater Vol. 166 (2019) pp.357-370.

DOI: 10.1016/j.actamat.2018.12.033

Google Scholar

[24] S.J. Rothman, The Measurement of Tracer Diffusion Coefficients in Solids, in: Diffusion in Crystalline Solids, edited by G.E. Murch and A.S. Nowick, Academic Press, Orlando, Fl (1984).

DOI: 10.1016/b978-0-12-522662-2.50006-6

Google Scholar

[25] J. Ribbe, D. Baither, G. Schmitz, and S.V. Divinski, Phys. Rev. Lett. 102 (2009) 165501.

Google Scholar

[26] Chr. Herzig, U Köhler, and S.V. Divinski, J. Appl. Phys. 85 (1999) 8119.

Google Scholar

[27] Chr. Herzig, J. Geise, and S.V. Divinski, Z. Metallkde., 93 (2002) 12.

Google Scholar

[28] L. G. Harrison: Trans. Faraday Soc. Vol. 57 (1961), pp.1191-1199.

Google Scholar

[29] F. Wenwer: Weiterentwicklung und Automatisierung der ionenstrahlzerstäubungstechnik für Diffusionsexperimente und Untersuchungen zum Mechanismus der Kobaltdiffusion in Niob(Institute for Materials Physics, WWU Münster, Germany 1994).

Google Scholar

[30] F. Wenwer, A. Gude, G. Rummel, M. Eggersmann, T. Zumkley, N.A. Stolwijk and H. Mehrer: Meas. Sci. Technol. Vol. 7 (1996) pp.632-640.

DOI: 10.1088/0957-0233/7/4/021

Google Scholar

[31] R. Catherall, W. Andreazza, M. Breitenfeldt, A. Dorsival, G.J. Focker, T.P. Gharsa, T.J. Glies, J.-L. Grenard, F. Locci and P. Martins, S. Marzari, J. Schipper, A. Shornikov and T. Stora: J. Phys. G: Nucl. Part. Phys. Vol. 44 (2017) p.094002.

DOI: 10.1088/1361-6471/aa7eba

Google Scholar

[32] K. Johnston, J. Schell, J.G. Correia, M. Deicher, H.P. Gunnlaugsson, A.S. Fenta, E. David-Bosne, A.R.G. Costa and D.C. Lupascu: J. Phys. G: Nucl. Part. Phys. Vol. 44 (2017) p.104001.[33] H. Wolf, F. Wagner, T. Wichert and ISOLDE collaboration: DDF Vol. 237-240 (2005) pp.491-498.

DOI: 10.1088/1361-6471/aa81ac

Google Scholar

[34] F. Hergemöller, M. Wegner, M. Deicher, H. Wolf, F. Brenner, H. Hutter, R. Abart and N.A. Stolwijk: Phys. Chem. Min. Vol. 44 (2017) pp.345-351.

DOI: 10.1007/s00269-016-0862-1

Google Scholar

[35] D. Gaertner, J. Kottke, Y. Chumlyakov, G. Wilde and S.V. Divinski: J. Mater. Res. Vol. 33 (2018) pp.3184-3191.

DOI: 10.1557/jmr.2018.162

Google Scholar

[36] Y. Iijima, K. Kimura and K. Hirano: Proc. 10th Symp. Ion Sources and Ion-Assisted Technology (Ionics, Tokyo, 1986) pp.297-302.

Google Scholar

[37] Y. Iijima, K. Yamada, H. Katoh, J.-K. Kim and K. Hirano: 13th Symp. Ion Sources and IonAssisted Technology (Ionics, Tokyo, 1990) pp.179-182.

Google Scholar

[38] Y. Iijima, H. Nitta, R. Nakamura, K. Takasawa, A. Inoue, S. Takemoto and Y. Yamazaki: J. Inst. Met. Vol. 69 (2005) pp.321-331.

Google Scholar

[39] N. Oono, H. Nitta and Y. Iijima: Mater. Trans. Vol. 44 (2003) pp.2078-2083.

Google Scholar

[40] S. Takemoto, H. Nitta, Y. Iijima and Y. Yamazaki: Phil. Mag. Vol. 87 (2007) pp.1619-1629.

Google Scholar

[41] H. Nitta, K. Miura, and Y. Iijima: Acta Mater Vol. 54 (2006) pp.2833-2847.

Google Scholar

[42] R.A. Pérez, F. Dyment, D. Abriola, G. García Bermudez and H. Somacal: J. Nucl. Mater. Vol. 186 (1992) pp.206-208.

Google Scholar

[43] R.A. Pérez, F. Dyment, G. García Bermúdez, H. Somacal and D. Abriola: J. Nucl. Mater. Vol. 207 (1993) pp.221-227.

Google Scholar

[44] M. Behar, F. Dyment, R.A. Pérez, J.H.R. dos Santos, R.L. Maltez and E.J. Savino: Phil. Mag. A Vol. 63 (1991) pp.967-972.

DOI: 10.1080/01418619108213929

Google Scholar

[45] M. Behar, M.R.F. Soares, F. Dyment, R.A. Pérez and S. Balart: Phil. Mag. A Vol. 80 (2000) pp.1319-1334.

Google Scholar

[46] M. Behar, J.H.R. dos Santos, F. Bernardi and F. Dyment: DDF Vol. 213-215 (2003) pp.1-18.

Google Scholar

[47] K.W. Chu, J.W. Mayer and M.A. Nicolet: Backscattering Spectrometry (Academic Press, New York, 1978).

Google Scholar

[48] W.K. Chu and J.R. Liu: Mat. Chem. Phys. Vol. 46 (1996) pp.183-188.

Google Scholar

[49] R.A. Pérez and F. Dyment: Appl. Phys. A Vol. 68 (1999) p.667.

Google Scholar

[50] J. Kučera: J. Phys. B Vol. 14 (1964) pp.914-922.

Google Scholar

[51] R.E. Pawel and T.S. Lundy: J. Electrochem. Soc. Vol. 115 (1968) p.233.

Google Scholar

[52] N.M Stewart, E.D. Jones and J.B. Mullin: J. Mater. Sci. Vol. 3 (1992) pp.211-217.

Google Scholar

[53] T.T. Shun and Y.C. Du: J. Alloys Compd. Vol. 479 (2009) pp.157-160.

Google Scholar

[54] M.J. Yao, K.G. Pradeep, C.C. Tasan and D. Raabe: Scripta Mater Vol. 72-72 (2014) pp.5-8.

Google Scholar

[55] Y. Deng, C.C. Tasan, K.G. Pradeep, H. Springer, A. Kostka and D. Raabe: Acta Mater Vol. 94 (2015) pp.124-133.[56] B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George and R.O. Ritchie: Science Vol. 345 (2014) pp.1153-1158.

DOI: 10.1126/science.1254581

Google Scholar

[57] S. Rajasekhara, L.P. Karjalainen, A. Kyröläinen and P.J. Ferreira: Advanced Steels (2011) pp.371-384.

Google Scholar

[58] S.V. Divinski, F. Hisker, Chr. Klinkenberg and Chr. Herzig: Intermetallics Vol. 14 (2006) pp.792-799.

DOI: 10.1016/j.intermet.2005.12.007

Google Scholar

[59] S.V. Divinski, C. Klinkenberg, Chr. Herzig, Tracer diffusion of niobium and titanium in binary and ternary titanium aluminides, J. Phase Equilibria Diffusion 26 (2005) 452-457.

DOI: 10.1361/154770305x66510

Google Scholar

[60] M. Vaidya, S. Sen, X. Zhang, L. Frommeyer, L. Rogal, S. Sankaran, B. Grabowski, G. Wilde, S.V. Divinski, Acta Mater. 196 (2020) pp.220-230.

DOI: 10.1016/j.actamat.2020.06.025

Google Scholar

[61] M.-M. Bé, V. Chisté, C. Dulieu, X. Mougeot, V.P. Chechev, N.K. Kuzmenko, F.G. Kondev, A. Luca, M. Galán, A.L. Nichols, A. Arinc, A. Pearce, X. Huang and B. Wang: Table of Radionuclides(BIPM, 2011).

Google Scholar

[62] J.F. Ziegler, D. Ziegler J.P and Biersack: Nucl. Instrum. Methods. Phys. Res. B Vol. 268 (2010) pp.1818-1823.

Google Scholar

[63] A. Strohm, T. Voss, W. Frank, P. Laitinen and J. Räisänen: Zeitschrift fuer Met. Res. Adv. Tech. Vol. 93 (2002) pp.737-744.

Google Scholar

[64] D. Gaertner, G. Wilde and S.V. Divinski: Acta Mater Vol. 127 (2017) pp.407-415.

Google Scholar

[65] R.T.P. Whipple: Philos. Mag. J. Sci. Vol. 45 (1954) pp.1225-1236.

Google Scholar

[66] S. Divinski, M. Lohmann and Chr. Herzig: Acta Mater Vol. 49 (2001) pp.249-261.

Google Scholar

[67] T. Suzuoka: J. Phys. Soc. Japan Vol. 19 (1964) pp.839-851.

Google Scholar

[68] H. S. Levine and C. J. MacCallum: J. Appl. Phys. Vol. 31 (1960) pp.595-599.

Google Scholar

[69] A. D. Le Claire: Br. J. Appl. Phys. Vol. 14 (1963) pp.351-356.

Google Scholar

[70] G.M. Muralikrishna, B. Tas, N. Esakkiraja, V.A. Esin, K.C. Hari Kumar, I.S. Golovin, I.V. Belova, G.E. Murch, A. Paul and S.V. Divinski: Acta Mater Vol. 203 (2021) p.116446.

DOI: 10.1016/j.actamat.2020.10.065

Google Scholar

[71] A. Paul, Phil. Magazine 93 (2013) pp.2297-2315.

Google Scholar

[72] A. Paul, A pseudobinary approach in multicomponent interdiffusion, arXiv:1509.04460 [condmat.mtrl-sci].

Google Scholar

[73] N. Esakkiraja and A. Paul, Scripta Mater. 147 (2018) pp.79-82.

Google Scholar

[74] N. Esakkiraja, K. Pandey, A. Dash and A. Paul, Phil. Magazine 99 (2019) pp.2236-2264.

Google Scholar

[75] F. Sauer and V. Freise: Zeitschrift für Elektrochemie Vol. 66 (1962) pp.353-362.

Google Scholar

[76] J.R. Manning. Phys. Rev. B Vol. 4 (1971) pp.1111-1121.

Google Scholar

[77] B. Sundman, B. Jansson and J.O. Andersson: Calphad Vol. 9 (1985) pp.153-190.

Google Scholar

[78] F.J.J. van Loo, Acta Met. 18 (1970) pp.1107-1111.

Google Scholar

[79] A. Paul, A.A. Kodentsov and F.J.J. van Loo, Acta Materialia 52 (2004) pp.4041-4048.[80] A. Paul, A.A. Kodentsov and F.J.J. van Loo, Journal of Alloys and Compounds 403 (2005) pp.147-153.

DOI: 10.1016/j.actamat.2004.05.028

Google Scholar

[81] J.F. Cornet, J. Phys. Chem. Solids 35 (1974) pp.1247-1252.

Google Scholar

[82] J. Levasseur and J. Philibert, J. Phys. Stat. Sol. B, 21 (1967) pp. K1-K4.

Google Scholar

[83] M.J.H. van Dal, M.C.L.P. Pleumeeres, A.A. Kodenstov and F.J.J. van Loo, Acta Met. 48 (2000) pp.385-396.

Google Scholar

[84] V.D. Divya, U. Ramamurty and A. Paul, Defects Diffusion Forum 312-315 (2011) pp.466-471.

DOI: 10.4028/www.scientific.net/ddf.312-315.466

Google Scholar

[85] V.D. Divya, U. Ramamurty and A. Paul, J Materials Research 26 (2011) pp.2384-2393.

Google Scholar

[86] A. Paul, A.A. Kodentsov, G. de With, F.J.J. van Loo, Intermetallics 11 (2003) 1195-1203.

Google Scholar

[87] V.A. Baheti, S. Kashyap, P. Kumar, K. Chattopadhyay, and A. Paul, Philosophical Magazine 98 (2018) pp.20-36.

Google Scholar

[88] V.A. Baheti, S. Kashyap, P. Kumar, K. Chattopadhyay, and A. Paul, Acta Materialia 131 (2017) pp.260-270.

Google Scholar

[89] C. Ghosh and A. Paul, Acta Materialia 57 (2009) pp.493-502.

Google Scholar

[90] V.A. Baheti and A. Paul, Acta Materialia 156 (2018) 420-431.

Google Scholar

[91] S. Prasad and A. Paul, Acta Materialia 59 (2011) 1577-1585.

Google Scholar

[92] M. Salamon, A. Strohm, T. Voss, P. Laitinen, I. Riihimäki, S. Divinski, et al. Phil Mag, 84 (2004), p.737.

Google Scholar

[93] S. Prasad and A. Paul, Intermetallics 19 (2011) 1191-1200.

Google Scholar

[94] V.A. Baheti, S. Kashyap, P. Kumar, K. Chattopadhyay, and A. Paul, Philosophical Magazine 97 (2017) pp.1782-1802.

Google Scholar

[95] Y. Iijima, Y. Wakabayashi, T. Itoga and K. Hirano, Mater. Trans. JIM 32 (1991) pp.457-464.

DOI: 10.2320/matertrans1989.32.457

Google Scholar

[96] Y. Minamino, T. Yamane, T. Kimura and T. Takahashi, J. Mater. Sci. Lett 7 (1988) p.365.

Google Scholar

[97] Y. Minamino, S.B. Jung, T. Yamane and K. Hirao, Metall. Trans. A 23 (1992( pp.2783-2790.

Google Scholar

[98] F.O. Shuck and H.L. Toor, J. Phys. Chem. 67 (1963) pp.540-545.

Google Scholar

[99] S.B. Jung, Y. Minamino, H. Araki, T. Yamane, K. Hirao and S. Saji, Defect Diff. Forum 95-98 (1993) pp.859-864.

DOI: 10.4028/www.scientific.net/ddf.95-98.859

Google Scholar

[100] A. Dash, N. Esakkiraja and A Paul, Acta Materialia 193 (2020) pp.163-171.

Google Scholar

[101] N Esakkiraja, A Dash, A Mondal, KC Kumar, A Paul, Materialia (2021) (in press).

Google Scholar

[102] D. Gaertner, J. Kottke, Y. Chumlyakov, F. Hergemöller, G. Wilde and S.V. Divinski, Scripta Materialia 187 (2020) pp.57-62.

DOI: 10.1016/j.scriptamat.2020.05.060

Google Scholar

[103] J.E. Morral, J Phase Equilibria Diffusion 39 (2018) p.51--56.

Google Scholar

[104] N.S. Kulkarni, R.J. Bruce Warmack and B. Radhakrishnan: J. Phase Equilib. Diffus. Vol. 35 (2014) pp.762-778.[105] St. Frank, S.V. Divinski, U. Södervall and Chr. Herzig: Acta Mater Vol. 49 (2001) pp.1399-1411.

Google Scholar

[106] S.V. Divinski, G. Reglitz, H. Rösner, Y. Estrin and G. Wilde: Acta Mater Vol. 59 (2011) pp.1974-1985.

DOI: 10.1016/j.actamat.2010.11.063

Google Scholar

[107] X. Sauvage, G. Wilde, S.V. Divinski, Z. Horita and R.Z. Valiev: Mat. Sci. Eng. A Vol. 540 (2012) pp.1-12.

Google Scholar

[108] G. Wildea and S.V. Divinski: Mater. Trans. Vol. 60 (2019) pp.1302-1315.

Google Scholar

[109] D. Prokoshkina, L. Klinger, A. Moros, G. Wilde, E. Rabkin and S.V. Divinski: Acta Mater Vol. 69 (2014) pp.314-325.

DOI: 10.1016/j.actamat.2014.02.002

Google Scholar

[110] S.V. Divinski, G. Reglitz and G. Wilde: Acta Mater Vol. 58 (2010) pp.386-395.

Google Scholar

[111] P. Van der Heide: Secondary ion mass spectrometry: an introduction to principles and practices. (John Wiley & Sons, 2014).

Google Scholar

[112] S. M. Daiser, C. Scholze and J.L. Maul: Nuc. Ins. and Meth. in Phys. Res. Sec. B Vol. 35 (1988) pp.544-549.

Google Scholar

[113] G. Wehner: J. of Vac. Sci. & Tech. A. Vol. 1 (1983) pp.487-490.

Google Scholar

[114] F. Stevie: Secondary ion mass spectrometry: Applications for depth profiling and surface characterization (Momentum Press, 2015).

Google Scholar

[115] J. F. Ziegler: Nuc. Inst. and Meth. in Phys. Res. Sec. B. Vol. 219-220 (2004) pp.1027-1036.

Google Scholar

[116] R.E. Stoller, M.B. Toloczko, G.S. Was, A.G. Certain, S. Dwaraknath and F.A. Garner: Nuc. Inst. and Meth. in Phys. Res. Sec. B. Vol. 310 (2013) pp.75-80.

Google Scholar

[117] Z. Jiang and P. Alkemade: Surf. and Interf. Anal. Vol. 27 (1999) pp.125-131.

Google Scholar

[118] K. Wittmaack: Surf. and Interf. Anal. Vol. 24 (1996) pp.389-398.

Google Scholar

[119] A. Benninghoven, F. Rudenauer and H.W. Werner: Secondary ion mass spectrometry: basic concepts, instrumental aspects, applications and trends (Wiley, New York, 1987).

DOI: 10.1002/sia.740100811

Google Scholar

[120] J. Hunter and M. Fayek: Secondary Ion Mass Spectrometry in the Earth Sciences: Gleaning the big picture from a small spot Vol. 41 (2009) pp.133-148.

Google Scholar

[121] A. Portavoce, K. Hoummada and L. Chow: Microscopy and Microanalysis. Vol. 25 (2019) pp.517-523.

Google Scholar

[122] T. Südkamp, H. Bracht, G. Impellizzeri, J. Lundsgaard Hansen, A. Nylandsted Larsen and E. Haller: Applied Physics Letters. Vol. 102 (2013) p.242103.

DOI: 10.1063/1.4811442

Google Scholar

[123] P. Williams and L.A. Streit: Nuc. Inst. and Meth. in Phys. Res. Sec. B. Vol. 15 (1986) pp.159-164.

Google Scholar

[124] R.L. Fogel'son, Ya.A. Ugai, A.V. Pokoev, and I.A. Akimova: Soviet Solide State Pjhysics Vol. 13 (1971) pp.856-858.

Google Scholar

[125] A.V. Pokoev, V.M. Mironov, and L.K. Kudryavceva: Proceedings of Higher Educational Institutions. Non-ferrous metallurgy Vol. 2 (1976) pp.130-134 (in Russian).[126] J. Bernardini and J. Cabane: Acta Metall. Vol. 21 (1973) p.1571.

Google Scholar

[127] R. L. Fogelson, Ya. A. Ugai, and A.V. Pokoev: Physics of Metals and Materials Science Vol. 33 (1972) pp.1102-1103. (in Russian).

Google Scholar

[128] R. L. Fogelson, Ya. A. Ugai, and A.V. Pokoev: Proceedings of Higher Educational Institutions. Non-ferrous metallurgy Vol. 3 (1973) pp.143-144. (in Russian).

Google Scholar

[129] R. L. Fogelson, J. A. Ugai, and A.V. Pokoev: Physics of Metals and Materials Science Vol. 35 (1973) pp.1307-1309. (in Russian).

Google Scholar

[130] A.A. Fedotov, A.V. Pokoev, and S.V. Divinski: Defect Diffusion Forum Vol. 383 (2018) pp.185-189.

Google Scholar

[131] A.V. Pokoev, A.A. Fedotov, and S.V. Divinski, Bulletin of the Russian Academy of Sciences: Physics Vol 83 (2019) pp.1529-1532.

Google Scholar

[132] G.B. Stephenson, Acta metall. 36 (1988) pp.2663-2683.

Google Scholar