Key Mechanisms behind Pedestrian Dynamics: Individual and Collective Patterns of Motion

Article Preview

Abstract:

Locomotion consists of cyclic events controlled by the neuronal activity of networks called central pattern generators. For a correct management of pedestrian flows, under regular or safety-critical situations, a deep understanding of individual and crowd dynamics is crucial. Here, we examine the emergence of walking and running forms of human gait. Individual locomotion and its interaction with other pedestrians is studied. Another key aspect examined is the self-organization experienced by a group of individuals which is a key concept to understand crowd dynamics. Self-organization leads to emergent properties, meaning that the whole system has characteristics that differ qualitatively from those of the component parts. The mechanisms behind the emergence of self-organized pattern of motion are also studied.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

153-164

Citation:

Online since:

February 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G. Cappellini, Y. P. Ivanenko, R. E. Poppele, F. Lacquaniti, Motor patterns in human walking and running, J Neurophysiol 95 (2006) 3426–3437.

DOI: 10.1152/jn.00081.2006

Google Scholar

[2] G. Borelli, De Motu Animalium, vol. 1., Lugduni. Leiden, 1685.

Google Scholar

[3] R. M. Alexander, Principles of Animal Locomotion, Princeton, University Press Princeton, (2003).

Google Scholar

[4] C. R. Lee, C. T. Farley, Determinants of the center of mass trajectory in human walking and running, J. Exp. Biol. 201 (1998) 2935–2944.

DOI: 10.1242/jeb.201.21.2935

Google Scholar

[5] C. E. Carr, J. McGee, The Apollo number: space suits, self-support, and the walk-run transition, PLoS ONE 4 (2009) e6614.

DOI: 10.1371/journal.pone.0006614

Google Scholar

[6] P. E. Roos, J. B. Dingwel, Using dynamic walking models to identify factors that contribute to increased risk of falling in older adults, Human Movement Science 32 (2013) 984-996.

DOI: 10.1016/j.humov.2013.07.001

Google Scholar

[7] J. Cham, J. K. Karpick, M. R. Cutkosky, Stride period adaptation for a biomimetic running hexapod, Int. J. Robotics Res. 23 (2004) 141–153.

DOI: 10.1177/0278364904041323

Google Scholar

[8] A. F. Miguel, The emergence of design in pedestrian dynamics: locomotion, self-organization, walking paths and constructal law, Physics of Life Reviews 10 (2013) 168–190.

DOI: 10.1016/j.plrev.2013.03.007

Google Scholar

[9] L. F. Henderson, D. M. Jenkins, Response of pedestrians to traffic challenge, Transportation Research 8 (1974) 71-74.

DOI: 10.1016/0041-1647(74)90019-7

Google Scholar

[10] D. Helbing, P. Molnar, A social force model for pedestrian dynamics, Phys. Rev. E 51 (1995) 4282-4286.

DOI: 10.1103/physreve.51.4282

Google Scholar

[11] A. Seyfried, B. Steffen, W. Klingsch, M. Boltes, The fundamental diagram of pedestrian movement revisited, J. Stat. Mech. 10 (2005) P10002.

DOI: 10.1088/1742-5468/2005/10/p10002

Google Scholar

[12] A. F. Miguel, Physics' insights into pedestrian motion and crowd dynamics, Physics of Life Reviews 10 (2013) 206–209.

DOI: 10.1016/j.plrev.2013.05.006

Google Scholar

[13] D. Helbing, L. Buzna, A. Johansson, T. Werner, Self-organized pedestrian crowd dynamics: experiments, simulations and design solutions, Transportation Science 39 (2005) 1-24.

DOI: 10.1287/trsc.1040.0108

Google Scholar

[14] L. F. Henderson, D. J. Lyons, Sexual differences in human crowd motion, Nature 240 (1972) 353–355.

DOI: 10.1038/240353a0

Google Scholar

[15] A. F. Miguel, Pattern formation and self-organization in living systems: a unified view for coral colonies and crowd dynamics, in: A. Bejan et al. (Eds. ), Constructal Human Dynamics, Security and Sustainability, IOS Press, Amsterdam, 2009, pp.61-83.

Google Scholar

[16] A. F. Miguel, Constructal patterns formation in nature, pedestrian motion and epidemics propagation, in: A. Bejan and G. W. Merkx (Eds. ), Constructal Theory of Social Dynamics, Springer, New York, 2007, pp.85-114.

DOI: 10.1007/978-0-387-47681-0_5

Google Scholar

[17] R. W. Bohannon, Comfortable and maximum walking speed of adults aged 20–79 years: reference values and determinants, Age Ageing 26 (1997)15–19.

DOI: 10.1093/ageing/26.1.15

Google Scholar

[18] A. Bejan, J. H. Marden, Unifying constructal theory for scale effects in running, swimming and flying, J. Exp. Biol. 209 (2006) 238–248.

DOI: 10.1242/jeb.01974

Google Scholar

[19] R. Kram, A. Domingo, D. P. Ferris, Effect of reduced gravity on the preferred walk-run transition speed, J. Exp. Biol. 200 (1997) 821–826.

DOI: 10.1242/jeb.200.4.821

Google Scholar

[20] C. L. Vaughan, M. J. O'Malley, Froude and the contribution of naval architecture to our understanding of bipedal locomotion, Gait Posture 21 (2005) 350–362.

DOI: 10.1016/j.gaitpost.2004.01.011

Google Scholar

[21] R. M. Alexander, A. S. Jayes, A dynamic similarity hypothesis for the gaits of quadrupedal mammals, J. Zool., Lond. 201 (1983) 135–152.

DOI: 10.1111/j.1469-7998.1983.tb04266.x

Google Scholar

[22] K. S. Thomas, H. J. McMann, US Spacesuits, Springer, New York, (2006).

Google Scholar

[23] J. E. Bertram, A. Ruina, Multiple walking speed-frequency relations are predicted by constrained optimization, J. Theor. Biol. 209 (2001) 445-453.

DOI: 10.1006/jtbi.2001.2279

Google Scholar

[24] R. M. Enok, Neuromechanics of Human Movement, Human Kinetics, Champaign IL, (2008).

Google Scholar

[25] C.T. Farley, T. A. McMahon, Energetics of walking and running: insights from simulated reduced-gravity experiments, J. Applied Physiology 73 (1992) 2709–2712.

DOI: 10.1152/jappl.1992.73.6.2709

Google Scholar

[26] A. Seyfried, B. Steffen, W. Klingsch, T. Lippert, M. Boltes, Steps toward the fundamental diagram — empirical results and modelling, in: A. Schadschneider, T. Poschel, R. Kuhne, M. Schreckenberg, D. E. Wolf (Eds. ), Traffic and Granular Flow´05, Springer, Berlin, 2007, p.357.

DOI: 10.1007/978-3-540-47641-2_26

Google Scholar

[27] A. F. Miguel, Constructal theory of pedestrian dynamics, Physics Letters A 373 (2009) 1734-1738.

DOI: 10.1016/j.physleta.2009.03.020

Google Scholar

[28] A. Lloyd, M. Somerville, Working information, J. Workplace Learning 18 (2006) 186–198.

Google Scholar

[29] A. F. Miguel, Toward a quantitative unifying theory of natural design of flow systems: emergence and evolution, in: L. Rocha, S. Lorente, A. Bejan (Eds. ), Constructal Law and the Unifying Principle of Design, Understanding Complex Systems, Springer, New York, 2013, pp.21-39.

DOI: 10.1007/978-1-4614-5049-8_2

Google Scholar

[30] A. F. Miguel, The physics principle of the generation of flow configuration, Physics of Life Reviews 8 (2011) 243-244.

DOI: 10.1016/j.plrev.2011.07.006

Google Scholar

[31] A. F. Miguel, Natural flow systems: acquiring their constructal morphology, International Journal of Design & Nature and Ecodynamics 5 (2010) 230-241.

DOI: 10.2495/dne-v5-n3-230-241

Google Scholar

[32] A. Jelic, C. Appert-Rolland, S. Lemercier, J. Pettré, Properties of pedestrians walking in line: stepping behavior, Physical Review E 86 (2012) 04611.

DOI: 10.1103/physreve.86.046111

Google Scholar

[33] A. F. Miguel, A. Bejan, The principle that generates dissimilar patterns inside aggregates of organisms, J. Phys. A 388 (2009) 727–731.

DOI: 10.1016/j.physa.2008.11.013

Google Scholar

[34] A. F. Miguel, Constructal pattern formation in stony corals, bacterial colonies and plant roots under different hydrodynamics conditions, Journal of Theoretical Biology 242 (2006) 954-961.

DOI: 10.1016/j.jtbi.2006.05.010

Google Scholar

[35] A. Bejan, Shape and Structure from Engineering to Nature, Cambridge University Press, Cambridge, (2000).

Google Scholar

[36] A. Torre, J. Burguete, Slow dynamics in a turbulent von Karman swirling flow, Phys. Rev. Lett. 99 (2007) 054101.

DOI: 10.1103/physrevlett.99.054101

Google Scholar

[37] M. U. Akhmet, Self-synchronization of the integrate-and-fire pacemaker model with continuous couplings, Nonlinear Analysis: Hybrid Systems 6 (2012) 730-740.

DOI: 10.1016/j.nahs.2011.07.003

Google Scholar

[38] A. D. Laposky, J. Bass, A. Kohsaka, F. W. Turek, Sleep and circadian rhythms: key components in the regulation of energy metabolism, FEBS Letters 582 (2008) 142-151.

DOI: 10.1016/j.febslet.2007.06.079

Google Scholar

[39] I. P. Mariño, K. Al Naimee, F. Salvadori, M. Capo, R. Meucci, F. T. Arecchi, Polarization synchronization in quasi-isotropic CO2 lasers, Optics Communications 276 (2007) 272-276.

DOI: 10.1016/j.optcom.2007.04.042

Google Scholar

[40] S. H. Strogatz, D. M. Abrams, A. McRobie, B. Eckhardt, E. Ott, Crowd synchrony on the Millennium Bridge, Nature 438 (2005) 43-44.

DOI: 10.1038/438043a

Google Scholar

[41] F. Venuti, L. Bruno, Crowd-structure interaction in lively footbridges under synchronous lateral excitation: a literature review, Phys. Life Rev. 6 (2009) 176–206.

DOI: 10.1016/j.plrev.2009.07.001

Google Scholar

[42] F. Venuti, Towards a unified theory of pedestrian dynamics, Phys. Life Rev. 10 (2013) 193–194.

Google Scholar

[43] A. Pikovsky, M. Rosenblum, J. Kurths, Synchronization, Cambridge University Press, Cambridge, (2001).

Google Scholar