[1]
G. Cappellini, Y. P. Ivanenko, R. E. Poppele, F. Lacquaniti, Motor patterns in human walking and running, J Neurophysiol 95 (2006) 3426–3437.
DOI: 10.1152/jn.00081.2006
Google Scholar
[2]
G. Borelli, De Motu Animalium, vol. 1., Lugduni. Leiden, 1685.
Google Scholar
[3]
R. M. Alexander, Principles of Animal Locomotion, Princeton, University Press Princeton, (2003).
Google Scholar
[4]
C. R. Lee, C. T. Farley, Determinants of the center of mass trajectory in human walking and running, J. Exp. Biol. 201 (1998) 2935–2944.
DOI: 10.1242/jeb.201.21.2935
Google Scholar
[5]
C. E. Carr, J. McGee, The Apollo number: space suits, self-support, and the walk-run transition, PLoS ONE 4 (2009) e6614.
DOI: 10.1371/journal.pone.0006614
Google Scholar
[6]
P. E. Roos, J. B. Dingwel, Using dynamic walking models to identify factors that contribute to increased risk of falling in older adults, Human Movement Science 32 (2013) 984-996.
DOI: 10.1016/j.humov.2013.07.001
Google Scholar
[7]
J. Cham, J. K. Karpick, M. R. Cutkosky, Stride period adaptation for a biomimetic running hexapod, Int. J. Robotics Res. 23 (2004) 141–153.
DOI: 10.1177/0278364904041323
Google Scholar
[8]
A. F. Miguel, The emergence of design in pedestrian dynamics: locomotion, self-organization, walking paths and constructal law, Physics of Life Reviews 10 (2013) 168–190.
DOI: 10.1016/j.plrev.2013.03.007
Google Scholar
[9]
L. F. Henderson, D. M. Jenkins, Response of pedestrians to traffic challenge, Transportation Research 8 (1974) 71-74.
DOI: 10.1016/0041-1647(74)90019-7
Google Scholar
[10]
D. Helbing, P. Molnar, A social force model for pedestrian dynamics, Phys. Rev. E 51 (1995) 4282-4286.
DOI: 10.1103/physreve.51.4282
Google Scholar
[11]
A. Seyfried, B. Steffen, W. Klingsch, M. Boltes, The fundamental diagram of pedestrian movement revisited, J. Stat. Mech. 10 (2005) P10002.
DOI: 10.1088/1742-5468/2005/10/p10002
Google Scholar
[12]
A. F. Miguel, Physics' insights into pedestrian motion and crowd dynamics, Physics of Life Reviews 10 (2013) 206–209.
DOI: 10.1016/j.plrev.2013.05.006
Google Scholar
[13]
D. Helbing, L. Buzna, A. Johansson, T. Werner, Self-organized pedestrian crowd dynamics: experiments, simulations and design solutions, Transportation Science 39 (2005) 1-24.
DOI: 10.1287/trsc.1040.0108
Google Scholar
[14]
L. F. Henderson, D. J. Lyons, Sexual differences in human crowd motion, Nature 240 (1972) 353–355.
DOI: 10.1038/240353a0
Google Scholar
[15]
A. F. Miguel, Pattern formation and self-organization in living systems: a unified view for coral colonies and crowd dynamics, in: A. Bejan et al. (Eds. ), Constructal Human Dynamics, Security and Sustainability, IOS Press, Amsterdam, 2009, pp.61-83.
Google Scholar
[16]
A. F. Miguel, Constructal patterns formation in nature, pedestrian motion and epidemics propagation, in: A. Bejan and G. W. Merkx (Eds. ), Constructal Theory of Social Dynamics, Springer, New York, 2007, pp.85-114.
DOI: 10.1007/978-0-387-47681-0_5
Google Scholar
[17]
R. W. Bohannon, Comfortable and maximum walking speed of adults aged 20–79 years: reference values and determinants, Age Ageing 26 (1997)15–19.
DOI: 10.1093/ageing/26.1.15
Google Scholar
[18]
A. Bejan, J. H. Marden, Unifying constructal theory for scale effects in running, swimming and flying, J. Exp. Biol. 209 (2006) 238–248.
DOI: 10.1242/jeb.01974
Google Scholar
[19]
R. Kram, A. Domingo, D. P. Ferris, Effect of reduced gravity on the preferred walk-run transition speed, J. Exp. Biol. 200 (1997) 821–826.
DOI: 10.1242/jeb.200.4.821
Google Scholar
[20]
C. L. Vaughan, M. J. O'Malley, Froude and the contribution of naval architecture to our understanding of bipedal locomotion, Gait Posture 21 (2005) 350–362.
DOI: 10.1016/j.gaitpost.2004.01.011
Google Scholar
[21]
R. M. Alexander, A. S. Jayes, A dynamic similarity hypothesis for the gaits of quadrupedal mammals, J. Zool., Lond. 201 (1983) 135–152.
DOI: 10.1111/j.1469-7998.1983.tb04266.x
Google Scholar
[22]
K. S. Thomas, H. J. McMann, US Spacesuits, Springer, New York, (2006).
Google Scholar
[23]
J. E. Bertram, A. Ruina, Multiple walking speed-frequency relations are predicted by constrained optimization, J. Theor. Biol. 209 (2001) 445-453.
DOI: 10.1006/jtbi.2001.2279
Google Scholar
[24]
R. M. Enok, Neuromechanics of Human Movement, Human Kinetics, Champaign IL, (2008).
Google Scholar
[25]
C.T. Farley, T. A. McMahon, Energetics of walking and running: insights from simulated reduced-gravity experiments, J. Applied Physiology 73 (1992) 2709–2712.
DOI: 10.1152/jappl.1992.73.6.2709
Google Scholar
[26]
A. Seyfried, B. Steffen, W. Klingsch, T. Lippert, M. Boltes, Steps toward the fundamental diagram — empirical results and modelling, in: A. Schadschneider, T. Poschel, R. Kuhne, M. Schreckenberg, D. E. Wolf (Eds. ), Traffic and Granular Flow´05, Springer, Berlin, 2007, p.357.
DOI: 10.1007/978-3-540-47641-2_26
Google Scholar
[27]
A. F. Miguel, Constructal theory of pedestrian dynamics, Physics Letters A 373 (2009) 1734-1738.
DOI: 10.1016/j.physleta.2009.03.020
Google Scholar
[28]
A. Lloyd, M. Somerville, Working information, J. Workplace Learning 18 (2006) 186–198.
Google Scholar
[29]
A. F. Miguel, Toward a quantitative unifying theory of natural design of flow systems: emergence and evolution, in: L. Rocha, S. Lorente, A. Bejan (Eds. ), Constructal Law and the Unifying Principle of Design, Understanding Complex Systems, Springer, New York, 2013, pp.21-39.
DOI: 10.1007/978-1-4614-5049-8_2
Google Scholar
[30]
A. F. Miguel, The physics principle of the generation of flow configuration, Physics of Life Reviews 8 (2011) 243-244.
DOI: 10.1016/j.plrev.2011.07.006
Google Scholar
[31]
A. F. Miguel, Natural flow systems: acquiring their constructal morphology, International Journal of Design & Nature and Ecodynamics 5 (2010) 230-241.
DOI: 10.2495/dne-v5-n3-230-241
Google Scholar
[32]
A. Jelic, C. Appert-Rolland, S. Lemercier, J. Pettré, Properties of pedestrians walking in line: stepping behavior, Physical Review E 86 (2012) 04611.
DOI: 10.1103/physreve.86.046111
Google Scholar
[33]
A. F. Miguel, A. Bejan, The principle that generates dissimilar patterns inside aggregates of organisms, J. Phys. A 388 (2009) 727–731.
DOI: 10.1016/j.physa.2008.11.013
Google Scholar
[34]
A. F. Miguel, Constructal pattern formation in stony corals, bacterial colonies and plant roots under different hydrodynamics conditions, Journal of Theoretical Biology 242 (2006) 954-961.
DOI: 10.1016/j.jtbi.2006.05.010
Google Scholar
[35]
A. Bejan, Shape and Structure from Engineering to Nature, Cambridge University Press, Cambridge, (2000).
Google Scholar
[36]
A. Torre, J. Burguete, Slow dynamics in a turbulent von Karman swirling flow, Phys. Rev. Lett. 99 (2007) 054101.
DOI: 10.1103/physrevlett.99.054101
Google Scholar
[37]
M. U. Akhmet, Self-synchronization of the integrate-and-fire pacemaker model with continuous couplings, Nonlinear Analysis: Hybrid Systems 6 (2012) 730-740.
DOI: 10.1016/j.nahs.2011.07.003
Google Scholar
[38]
A. D. Laposky, J. Bass, A. Kohsaka, F. W. Turek, Sleep and circadian rhythms: key components in the regulation of energy metabolism, FEBS Letters 582 (2008) 142-151.
DOI: 10.1016/j.febslet.2007.06.079
Google Scholar
[39]
I. P. Mariño, K. Al Naimee, F. Salvadori, M. Capo, R. Meucci, F. T. Arecchi, Polarization synchronization in quasi-isotropic CO2 lasers, Optics Communications 276 (2007) 272-276.
DOI: 10.1016/j.optcom.2007.04.042
Google Scholar
[40]
S. H. Strogatz, D. M. Abrams, A. McRobie, B. Eckhardt, E. Ott, Crowd synchrony on the Millennium Bridge, Nature 438 (2005) 43-44.
DOI: 10.1038/438043a
Google Scholar
[41]
F. Venuti, L. Bruno, Crowd-structure interaction in lively footbridges under synchronous lateral excitation: a literature review, Phys. Life Rev. 6 (2009) 176–206.
DOI: 10.1016/j.plrev.2009.07.001
Google Scholar
[42]
F. Venuti, Towards a unified theory of pedestrian dynamics, Phys. Life Rev. 10 (2013) 193–194.
Google Scholar
[43]
A. Pikovsky, M. Rosenblum, J. Kurths, Synchronization, Cambridge University Press, Cambridge, (2001).
Google Scholar