Simulation of Precipitates Evolution in Steels with V and Nb at Annealing

Article Preview

Abstract:

Based on the mean field approximation, a model has been worked out for the description of evolution of carbonitride precipitate ensemble with various composition in steels at the stages of their growth, dissolution and coarsening. Based on the numerical realization of this model, the calculations of growth and dissolution kinetics of carbonitrides in a Fe-Nb-V-C-N system have been carried out.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

167-180

Citation:

Online since:

February 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] V.V. Popov: in Industrial and Technological Applications of Transport in Porous Materials, edited by J.M.P.Q. Delgado / Springer-Verlag Berlin Heidelberg 2013, 215 p.

Google Scholar

[2] J. Svoboda, F.D. Fischer, P. Fratzl, and E. Kozeschnik: Mater. Sci. Eng. A. Vol. 385 (2004) p.166–174.

Google Scholar

[3] E. Kozeschnik, J. Svoboda and F.D. Fischer: CALPHAD Vol. 28 (2004), p.379.

Google Scholar

[4] B.S. Srinivas Prasad, V.B. Rajkumar and K.C. Hari Kumar: CALPHAD Vol. 36 (2012), p.1.

Google Scholar

[5] V.V. Popov: Phys. Met. Metallogr. Vol. 87 (1999), pp.379-386.

Google Scholar

[6] V.V. Popov: Phys. Met. Metallogr. Vol. 88 (1999), pp.533-541.

Google Scholar

[7] V.V. Popov: Phys. Met. Metallogr. Vol. 89 (2000), pp.5-11.

Google Scholar

[8] V.V. Popov: Phys. Met. Metallogr. Vol. 93 (2002), pp.303-309.

Google Scholar

[9] V.V. Popov: Phil. Mag. A Vol. 82 (2002), pp.17-27.

Google Scholar

[10] V.V. Popov and I.I. Gorbachev: Phys. Met. Metallogr. Vol. 95 (2003), pp.417-426.

Google Scholar

[11] V.V. Popov, I.I. Gorbachev and J.A. Alyabieva: Phil. Mag. A Vol. 85 (2005), pp.2449-2467.

Google Scholar

[12] I.I. Gorbachev, V.V. Popov and E.N. Akimova: Phys. Met. Metallogr. Vol. 102 (2006), pp.18-28.

Google Scholar

[13] V. Popov and I. Gorbachev: Def. Diff. Forum Vol. 263 (2007), pp.171-176.

Google Scholar

[14] I.I. Gorbachev, V.V. Popov and A. Yu. Pasynkov: Phys. Met. Metallogr. Vol. 114 (2013), pp.741-751.

Google Scholar

[15] K. Inoue, N. Ishikawa, I. Ohnuma, H. Ohtani and K. Ishida: ISIJ International Vol. 41 (2001), p.175.

Google Scholar

[16] I.I. Gorbachev and V.V. Popov: Phys. Met. Metallogr. Vol. 111 (2011), pp.495-502.

Google Scholar

[17] K. Tsumuraya and Y. Miyata: Acta Metall. Vol. 31 (1983), p.437.

Google Scholar

[18] M. Hillert and L. -I. Staffonsson: Acta Chemica Scand. Vol. 31 (1970), p.3618.

Google Scholar

[19] B. Sundman and J. Agren: J. Phys. Chem. Solids. Vol. 42 (1981). p.297.

Google Scholar

[20] I.I. Gorbachev and V.V. Popov: Phys. Met. Metallogr. Vol. 111(5) (2011), pp.495-502.

Google Scholar

[21] N. Fujita et al.: Model. Simul. Mater. Sci. Eng. Vol. 12 (2004), pp.273-284.

Google Scholar

[22] S. Okaguchi and T. Hashimoto: ISIJ International. V. 32 (1992), pp.283-290.

Google Scholar

[23] J. Geise and Ch. Herzig: Z. Metallk. Vol. 76(9) (1985), pp.622-626.

Google Scholar

[24] J. Geise and Ch. Herzig: Z. Metallk. Vol. 78(4) (1987), pp.291-294.

Google Scholar

[25] J. Agren: Scripta Metall. Vol. 20(11) (1986), p.1507 – 1510.

Google Scholar

[26] P. Grieveson and E.T. Turkdogan: Trans. Met. Soc. AIME. V. 230(3) (1964), pp.407-414.

Google Scholar