Modelling the Pore Level Heat Transfer in Porous Media Using the Immersed Boundary Method

Article Preview

Abstract:

This work presents the extension of a compact finite difference immersed boundary method for the detailed calculation of fluid flow and heat transfer in porous media. The unsteady incompressible Navier-Stokes and energy conservation equations are solved with fourth-order Runge-Kutta temporal discretization and fourth-order compact schemes for spatial discretization, which allows achieving highly accurate calculations. Verification proves that the method is higher than third-order accurate. Three test cases were used for the validation of the method: (i) isothermal flow around a square cylinder in a plane parallel channel, (ii) isothermal flow through an infinite row of square cylinders and iii) flow and heat transfer around a square cylinder in a plane parallel channel. The validation tests establish confidence in the application of the method to porous media. As an example of such an application, direct numerical simulations are conducted for a staggered array of equal size square cylinders. Although the problem is rather complex from the geometrical point of view, a Cartesian grid is employed, with all its advantages. The potential of applying an immersed boundary method to the solution of a multiphase problem with complex internal boundaries is demonstrated.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

63-85

Citation:

Online since:

February 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Whitaker, Diffusion and dispersion in porous media, AIChE J. 13 (1967) 420-427.

DOI: 10.1002/aic.690130308

Google Scholar

[2] J.C. Slattery, Two-phase flow through porous media, AIChE J. 16 (1970) 345-352.

DOI: 10.1002/aic.690160306

Google Scholar

[3] K. Vafai, C.L. Tien, Boundary and inertia effects on flow and heat transfer in porous media, Int. J. Heat Mass Transfer 24 (1981) 195-203.

DOI: 10.1016/0017-9310(81)90027-2

Google Scholar

[4] J.A. Ochoa-Tapia, S. Whitaker, Heat transfer at the boundary between a porous medium and a homogeneous fluid, Int. J. Heat Mass Transfer 40 (1997) 2691-2707.

DOI: 10.1016/s0017-9310(96)00250-5

Google Scholar

[5] J.C.F. Pereira, M. Costa, I. Malico, Experimental and numerical investigation of a porous counterflow heat exchanger model, J. Enhanced Heat Transfer 8 (2001) 185-200.

DOI: 10.1615/jenhheattransf.v8.i3.50

Google Scholar

[6] A.A. Mohamad, Heat transfer enhancements in heat exchangers fitted with porous media Part I: constant wall temperature, Int. J. Thermal Sci. 42 (2003) 385-395.

DOI: 10.1016/s1290-0729(02)00039-x

Google Scholar

[7] A.C. Pivem, M.J.S. de Lemos, Numerical simulation of a crossflow moving porous bed using a thermal non-equilibrium model, Int. J. Heat Mass Transfer 67 (2013) 311-325.

DOI: 10.1016/j.ijheatmasstransfer.2013.07.087

Google Scholar

[8] J. Finn, S.V. Apte, Relative performance of body fitted and fictitious domain simulations of flow through fixed packed beds of spheres, Int. J. Multiphase Flow 56 (2013) 54-71.

DOI: 10.1016/j.ijmultiphaseflow.2013.05.001

Google Scholar

[9] F. Kuwahara, A. Nakayama, H. Koyama, A numerical study of thermal dispersion in porous media, J. Heat Transfer 118 (1996) 756-761.

DOI: 10.1115/1.2822696

Google Scholar

[10] F. Kuwahara, M. Shirota, A. Nakayama, A numerical study of interfacial convective heat transfer coefficient in two-energy equation model for convection in porous media, Int. J. Heat Mass Transfer 44 (2001) 1153-1159.

DOI: 10.1016/s0017-9310(00)00166-6

Google Scholar

[11] M.B. Saito, M.J.S. de Lemos, Interfacial heat transfer coefficient for non-equilibrium convective transport in porous media, Int. Communications Heat Mass Transfer 32 (2005) 666-676.

DOI: 10.1016/j.icheatmasstransfer.2004.06.013

Google Scholar

[12] M.B. Saito, M.J.S. de Lemos, A correlation for interfacial heat transfer coefficient for turbulent flow over an array of square rods, J. Heat Transfer 128 (2006) 444-452.

DOI: 10.1115/1.2175150

Google Scholar

[13] M. Chandesris, A. d'Hueppe, B. Mathieu, D. Jamet, B. Goyeau, Direct numerical simulation of turbulent heat transfer in a fluid-porous domain, Phys. Fluids 25 (2013) 125110.

DOI: 10.1063/1.4851416

Google Scholar

[14] F.E. Teruel, L. Díaz, Calculation of the interfacial heat transfer coefficient in porous media employing numerical simulations, Int. J. Heat Mass Transfer 60 (2013) 406-412.

DOI: 10.1016/j.ijheatmasstransfer.2012.12.022

Google Scholar

[15] M. Kaviany, Principles of Heat Transfer in Porous Media, second ed., Springer-Verlag, New York, (1995).

Google Scholar

[16] R.J. Hill, D.L. Koch, Moderate-Reynolds-number flow in a wall-bounded porous medium, J. Fluid Mechanics 453 (2002) 315-344.

DOI: 10.1017/s002211200100684x

Google Scholar

[17] A. Nabovati, A.C.M. Sousa, Fluid flow simulation in random porous media at pore level suing the Lattice Boltzmann method, J. Eng. Sci. Technol. 2 (2007) 226-237.

DOI: 10.1007/978-3-540-75995-9_172

Google Scholar

[18] R.S. Maier, R.S. Bernard, Lattice-Boltzmann accuracy in pore-scale flow simulation, J. Computational Phys. 229 (2010) 233-255.

DOI: 10.1016/j.jcp.2009.09.013

Google Scholar

[19] J.J. Derksen, R.A. Larsen, Drag and lift forces on random assemblies of wall-attached spheres in low-Reynolds-number shear flow, J. Fluid Mechanics 673 (2011) 548-573.

DOI: 10.1017/s0022112010006403

Google Scholar

[20] S.S. Hosseini, S.F. Nia, M.H. Rahimian, Pore scale simulation of laminar flow and heat transfer in porous media using the lattice Boltzmann method, J. Enhanced Heat Transfer 18 (2011) 273-279.

DOI: 10.1615/jenhheattransf.v18.i4.20

Google Scholar

[21] Q. Dai, H. Chen, L.W. Yang, Numerical simulations of oscillating flow and heat transfer in porous media by lattice boltzmann method, American Institute of Physics Conference Series, 1434 (2012) 1891-1898.

DOI: 10.1063/1.4707127

Google Scholar

[22] X. Li, J. Chen, M. Xu, X. Huai, F. Xin, J. Cai, Lattice Boltzmann simulation of catalytic reaction in porous media with buoyancy, Applied Thermal Eng. 70 (2014) 586-592.

DOI: 10.1016/j.applthermaleng.2014.04.034

Google Scholar

[23] M. Sahraoui, M. Kaviany, Direct simulation vs. volume-averaged treatment of adiabatic, premixed flame in a porous medium, Int. J. Heat Mass Transfer 37 (1994) 2817-2834.

DOI: 10.1016/0017-9310(94)90338-7

Google Scholar

[24] E.J. Braga, M.J.S. de Lemos, Laminar natural convection in cavities filled with circular and square rods, Int. Commun. Heat Mass Transfer 32 (2005) 1289-1297.

DOI: 10.1016/j.icheatmasstransfer.2005.07.014

Google Scholar

[25] A.A. Alshare, P.J. Strykowski, T.W. Simon, Modeling of unsteady and steady fluid flow, heat transfer and dispersion in porous media using unit cell scale, Int. J. Heat Mass Transfer 53 (2010) 2294-2310.

DOI: 10.1016/j.ijheatmasstransfer.2009.11.001

Google Scholar

[26] S. Haussener, P. Coray, W. Lipiński, P. Wyss, A. Steinfeld, Tomography-based heat and mass transfer characterization of reticulate porous ceramics for high-temperature processing, J. Heat Transfer 132 (2010) 023305.

DOI: 10.1115/1.4000226

Google Scholar

[27] A. Kopanidis, A. Theodorakakos, E. Gavaises, D. Bouris, 3D numerical simulation of flow and conjugate heat transfer through a pore scale model of high porosity open cell metal foam, Int. J. Heat Mass Transfer 53 (2010) 2539-2550.

DOI: 10.1016/j.ijheatmasstransfer.2009.12.067

Google Scholar

[28] S. Palle, S. Aliabadi, Direct simulation of structured wall bounded packed beds using hybrid FE/FV methods, Computers Fluids 88 (2013) 730-742.

DOI: 10.1016/j.compfluid.2013.05.012

Google Scholar

[29] P. Ranut, E. Nobile, L. Mancini, High resolution microtomography-based CFD simulation of flow and heat transfer in aluminum metal foams, Applied Thermal Eng. 69 (2014) 230-240.

DOI: 10.1016/j.applthermaleng.2013.11.056

Google Scholar

[30] R. Mittal, G. Iaccarino, Immersed boundary methods, Annual Review Fluid Mechanics 37 (2005) 239-261.

DOI: 10.1146/annurev.fluid.37.061903.175743

Google Scholar

[31] C.S. Peskin, Flow patterns around heart valves: A numerical method, J. Computational Phys. 10(1972) 252-271.

DOI: 10.1016/0021-9991(72)90065-4

Google Scholar

[32] C.S. Peskin, The immersed boundary method, Acta Numerica 11 (2002) 479-517.

DOI: 10.1017/s0962492902000077

Google Scholar

[33] T. Ye, R. Mittal, H.S. Udaykumar, W. Shyy, An accurate Cartesian grid method for viscous incompressible flows with complex immersed boundaries, J. Computational Phys. 156 (1999) 209-240.

DOI: 10.1006/jcph.1999.6356

Google Scholar

[34] E.A. Fadlun, R. Verzicco, P. Orlandi, J. Mohd-Yusof, Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations, J. Computational Phys. 161 (2000) 35–60.

DOI: 10.1006/jcph.2000.6484

Google Scholar

[35] H.S. Udaykumar, R. Mittal, P. Rampunggoon, A. Khanna, A sharp interface Cartesian grid method for simulating flows with complex moving boundaries, J. Computational Phys. 174 (2001) 345–380.

DOI: 10.1006/jcph.2001.6916

Google Scholar

[36] J. Kim, D. Kim, H. Choi, An immersed-boundary finite-volume method for simulations of flow in complex geometries, J. Computational Phys. 171 (2001) 132-150.

DOI: 10.1006/jcph.2001.6778

Google Scholar

[37] R. Ghias, R. Mittal, H. Dong, A sharp interface immersed boundary method for compressible viscous flows, J. Computational Phys. 225 (2007) 528–553.

DOI: 10.1016/j.jcp.2006.12.007

Google Scholar

[38] P.J.S.A. Ferreira de Sousa, J.C.F. Pereira, J.J. Allen, Two dimensional compact finite difference immersed boundary method, Int. J. Numerical Methods Fluids 65 (2011) 609-624.

DOI: 10.1002/fld.2199

Google Scholar

[39] W.P. Breugem, B.J. Boersma, Direct numerical simulations of turbulent flow over a permeable wall using a direct and a continuum approach, Phys. Fluids 17 (2005) 025103.

DOI: 10.1063/1.1835771

Google Scholar

[40] D.J. Lopez Penha, B.J. Geurts, S. Stolz, M. Nordlund, Computing the apparent permeability of an array of staggered square rods using volume-penalization, Computers Fluids 51 (2011) 157-173.

DOI: 10.1016/j.compfluid.2011.08.011

Google Scholar

[41] L. Ghazaryan, D.J. Lopez Penha, S. Stolz, A.K. Kuczaj, B.J. Geurts, No-slip consistent immersed boundary particle tracking to simulate impaction filtration in porous media, Int. J. Numerical Methods Fluids 73 (2013) 615-636.

DOI: 10.1002/fld.3815

Google Scholar

[42] F. Ilinca, J. -F. Hétu, Solution of the flow around complex-shaped surfaces by an immersed boundary-body conformal enrichment method, Int. J. Numerical Methods Fluids 69 (2012) 824-841.

DOI: 10.1002/fld.2615

Google Scholar

[43] P.K. Smolarkiewicz, C.L. Winter, Pores resolving simulation of Darcy flows, J. Computational Phys. 229 (2010) 3121-3133.

DOI: 10.1016/j.jcp.2009.12.031

Google Scholar

[44] N.G. Deen, S.H.L. Kriebitzsch, M.A. van der Hoef, J.A.M. Kuipers, Direct numerical simulation of flow and heat transfer in dense fluid–particle systems, Chemical Eng. Sci. 81 (2012) 329-344.

DOI: 10.1016/j.ces.2012.06.055

Google Scholar

[45] H. Tavassoli, S.H.L. Kriebitzsch, M.A. van der Hoef, E.A.J.F. Peters, J.A.M. Kuipers, Direct numerical simulation of particulate flow with heat transfer, Int. J. Multiphase Flow 57 (2013) 29-37.

DOI: 10.1016/j.ijmultiphaseflow.2013.06.009

Google Scholar

[46] N.G. Deen, J.A.M. Kuipers, Direct numerical simulation of fluid flow accompanied by coupled mass and heat transfer in dense fluid-particle systems, Chemical Eng. Sci. 116 (2014) 645-656.

DOI: 10.1016/j.ces.2014.05.036

Google Scholar

[47] S. Tenneti, B. Sun, R. Garg, S. Subramaniam, Role of fluid heating in dense gas–solid flow as revealed by particle-resolved direct numerical simulation, Int. J. Heat Mass Transfer 58 (2013) 471-479.

DOI: 10.1016/j.ijheatmasstransfer.2012.11.006

Google Scholar

[48] Z. -G. Feng, S.G. Musong, Direct numerical simulation of heat and mass transfer of spheres in a fluidized bed, Powder Technology 262 (2014) 62-70.

DOI: 10.1016/j.powtec.2014.04.019

Google Scholar

[49] J. Xia, K. Luo, J. Fan, A ghost-cell based high-order immersed boundary method for inter-phase heat transfer simulation, Int. J. Heat Mass Transfer 75 (2014) 302-312.

DOI: 10.1016/j.ijheatmasstransfer.2014.03.048

Google Scholar

[50] B.J. Boersma, A 6th order staggered compact finite difference method for the incompressible Navier-Stokes and scalar transport equations, J. Computational Phys. 230 (2011) 4940-4954.

DOI: 10.1016/j.jcp.2011.03.014

Google Scholar

[51] A. Brüger, B. Gustafsson, P. Lötstedt, J. Nilsson, High order accurate solution of the incompressible Navier–Stokes equations, J. Computational Phys. 203 (2005) 49-71.

DOI: 10.1016/j.jcp.2004.08.019

Google Scholar

[52] R. Knikker, Study of a staggered fourth-order compact scheme for unsteady incompressible viscous flows, Int. J. Numerical Methods Fluids 59 (2009) 1063-1092.

DOI: 10.1002/fld.1854

Google Scholar

[53] K.K.Q. Zhang, B. Shotorban, W.J. Minkowycz, F. Mashayek, A compact finite difference method on staggered grid for Navier–Stokes flows, Int. J. Numerical Methods Fluids 52 (2006) 867-881.

DOI: 10.1002/fld.1207

Google Scholar

[54] K. Mahesh, A family of high order finite difference schemes with good spectral resolution, J. Computational Phys. 145 (1998) 332-358.

DOI: 10.1006/jcph.1998.6022

Google Scholar

[55] B.J. Boersma, A staggered compact finite difference formulation for the compressible Navier–Stokes equations, J. Computational Phys. 208 (2005) 675-690.

DOI: 10.1016/j.jcp.2005.03.004

Google Scholar

[56] J. Mohd-Yusof, Combined immersed boundaries/B–splines methods for simulations of flows in complex geometries, CTR Annual Research Briefs, NASA Ames/Stanford University, Stanford, 1997, pp.317-327.

Google Scholar

[57] S. Nagarajan, S.K. Lele, J.H. Ferziger, A robust high-order compact method for large eddy simulation, J. Computational Phys. 191 (2003) 392-419.

DOI: 10.1016/s0021-9991(03)00322-x

Google Scholar

[58] M. Breuer, J. Bernsdorf, T. Zeiser, F. Durst, Accurate computations of the laminar flow past a square cylinder based on two different methods: lattice-Boltzmann and finite-volume, Int. J. Heat Fluid Flow 21 (2000) 186-196.

DOI: 10.1016/s0142-727x(99)00081-8

Google Scholar

[59] S.R. Kumar, A. Sharma, A. Agrawal, Simulation of flow around a row of square cylinders, J. Fluid Mechanics 606 (2008) 369-397.

DOI: 10.1017/s0022112008001924

Google Scholar

[60] A. Sharma, V. Eswaran, Effect of channel confinement on the two-dimensional laminar flow and heat transfer across a square cylinder, Numerical Heat Transfer, Part A: Applications 47 (2004) 79-107.

DOI: 10.1080/10407780490520760

Google Scholar

[61] A. Barletta, Local energy balance, specific heats and the Oberbeck-Boussinesq approximation, Int. J. Heat Mass Transfer 52 (2009) 5266-5270.

DOI: 10.1016/j.ijheatmasstransfer.2009.06.006

Google Scholar

[62] S.K. Lele, Compact finite difference schemes with spectral-like resolution, J. Computational Phys. 103 (1992) 16–42.

DOI: 10.1016/0021-9991(92)90324-r

Google Scholar

[63] P.J.S.A. Ferreira de Sousa, J.C.F. Pereira, Fourth- and tenth-order compact finite difference solutions of perturbed circular vortex flows, Int. J. Numerical Methods Fluids 49 (2005) 603-618.

DOI: 10.1002/fld.1017

Google Scholar

[64] I. Malico, P.J.S.A. Ferreira de Sousa, Modeling the pore level fluid flow in porous media using the immersed boundary method, Numerical Analysis of Heat and Mass Transfer in Porous Media, Springer, Berlin Heidelberg, 2012, pp.229-251.

DOI: 10.1007/978-3-642-30532-0_9

Google Scholar

[65] P.J. Roache, Verification of codes and calculations, AIAA J. 36 (1998) 696–702.

DOI: 10.2514/3.13882

Google Scholar

[66] A. -K. Tornberg, B. Engquist, Numerical approximations of singular source terms in differential equations, J. Computational Phys. 200 (2004) 462–488.

DOI: 10.1016/j.jcp.2004.04.011

Google Scholar

[67] P.J.S.A. Ferreira de Sousa, I. Malico, G. Fernandes, Numerical simulation of 2D flow through a packed bed of square cylinders, Defect Diffusion Forum 326 (2012) 725-730.

DOI: 10.4028/www.scientific.net/ddf.326-328.725

Google Scholar

[68] P.J.S.A. Ferreira de Sousa, I. Malico, G. Fernandes, 2D flow in a wall-bounded porous médium, Defect Diffusion Forum 334 (2013) 359-364.

DOI: 10.4028/www.scientific.net/ddf.334-335.359

Google Scholar

[69] A. Okajima, Strouhal numbers of rectangular cylinders, J. Fluid Mechanics 123 (1982) 379-398.

DOI: 10.1017/s0022112082003115

Google Scholar

[70] K.M. Kelkar, S.V. Patankar, Numerical prediction of vortex shedding behind a square cylinder, Int. J. Numerical Methods Fluids 14 (1992) 327-341.

DOI: 10.1002/fld.1650140306

Google Scholar