[1]
S. Whitaker, Diffusion and dispersion in porous media, AIChE J. 13 (1967) 420-427.
DOI: 10.1002/aic.690130308
Google Scholar
[2]
J.C. Slattery, Two-phase flow through porous media, AIChE J. 16 (1970) 345-352.
DOI: 10.1002/aic.690160306
Google Scholar
[3]
K. Vafai, C.L. Tien, Boundary and inertia effects on flow and heat transfer in porous media, Int. J. Heat Mass Transfer 24 (1981) 195-203.
DOI: 10.1016/0017-9310(81)90027-2
Google Scholar
[4]
J.A. Ochoa-Tapia, S. Whitaker, Heat transfer at the boundary between a porous medium and a homogeneous fluid, Int. J. Heat Mass Transfer 40 (1997) 2691-2707.
DOI: 10.1016/s0017-9310(96)00250-5
Google Scholar
[5]
J.C.F. Pereira, M. Costa, I. Malico, Experimental and numerical investigation of a porous counterflow heat exchanger model, J. Enhanced Heat Transfer 8 (2001) 185-200.
DOI: 10.1615/jenhheattransf.v8.i3.50
Google Scholar
[6]
A.A. Mohamad, Heat transfer enhancements in heat exchangers fitted with porous media Part I: constant wall temperature, Int. J. Thermal Sci. 42 (2003) 385-395.
DOI: 10.1016/s1290-0729(02)00039-x
Google Scholar
[7]
A.C. Pivem, M.J.S. de Lemos, Numerical simulation of a crossflow moving porous bed using a thermal non-equilibrium model, Int. J. Heat Mass Transfer 67 (2013) 311-325.
DOI: 10.1016/j.ijheatmasstransfer.2013.07.087
Google Scholar
[8]
J. Finn, S.V. Apte, Relative performance of body fitted and fictitious domain simulations of flow through fixed packed beds of spheres, Int. J. Multiphase Flow 56 (2013) 54-71.
DOI: 10.1016/j.ijmultiphaseflow.2013.05.001
Google Scholar
[9]
F. Kuwahara, A. Nakayama, H. Koyama, A numerical study of thermal dispersion in porous media, J. Heat Transfer 118 (1996) 756-761.
DOI: 10.1115/1.2822696
Google Scholar
[10]
F. Kuwahara, M. Shirota, A. Nakayama, A numerical study of interfacial convective heat transfer coefficient in two-energy equation model for convection in porous media, Int. J. Heat Mass Transfer 44 (2001) 1153-1159.
DOI: 10.1016/s0017-9310(00)00166-6
Google Scholar
[11]
M.B. Saito, M.J.S. de Lemos, Interfacial heat transfer coefficient for non-equilibrium convective transport in porous media, Int. Communications Heat Mass Transfer 32 (2005) 666-676.
DOI: 10.1016/j.icheatmasstransfer.2004.06.013
Google Scholar
[12]
M.B. Saito, M.J.S. de Lemos, A correlation for interfacial heat transfer coefficient for turbulent flow over an array of square rods, J. Heat Transfer 128 (2006) 444-452.
DOI: 10.1115/1.2175150
Google Scholar
[13]
M. Chandesris, A. d'Hueppe, B. Mathieu, D. Jamet, B. Goyeau, Direct numerical simulation of turbulent heat transfer in a fluid-porous domain, Phys. Fluids 25 (2013) 125110.
DOI: 10.1063/1.4851416
Google Scholar
[14]
F.E. Teruel, L. Díaz, Calculation of the interfacial heat transfer coefficient in porous media employing numerical simulations, Int. J. Heat Mass Transfer 60 (2013) 406-412.
DOI: 10.1016/j.ijheatmasstransfer.2012.12.022
Google Scholar
[15]
M. Kaviany, Principles of Heat Transfer in Porous Media, second ed., Springer-Verlag, New York, (1995).
Google Scholar
[16]
R.J. Hill, D.L. Koch, Moderate-Reynolds-number flow in a wall-bounded porous medium, J. Fluid Mechanics 453 (2002) 315-344.
DOI: 10.1017/s002211200100684x
Google Scholar
[17]
A. Nabovati, A.C.M. Sousa, Fluid flow simulation in random porous media at pore level suing the Lattice Boltzmann method, J. Eng. Sci. Technol. 2 (2007) 226-237.
DOI: 10.1007/978-3-540-75995-9_172
Google Scholar
[18]
R.S. Maier, R.S. Bernard, Lattice-Boltzmann accuracy in pore-scale flow simulation, J. Computational Phys. 229 (2010) 233-255.
DOI: 10.1016/j.jcp.2009.09.013
Google Scholar
[19]
J.J. Derksen, R.A. Larsen, Drag and lift forces on random assemblies of wall-attached spheres in low-Reynolds-number shear flow, J. Fluid Mechanics 673 (2011) 548-573.
DOI: 10.1017/s0022112010006403
Google Scholar
[20]
S.S. Hosseini, S.F. Nia, M.H. Rahimian, Pore scale simulation of laminar flow and heat transfer in porous media using the lattice Boltzmann method, J. Enhanced Heat Transfer 18 (2011) 273-279.
DOI: 10.1615/jenhheattransf.v18.i4.20
Google Scholar
[21]
Q. Dai, H. Chen, L.W. Yang, Numerical simulations of oscillating flow and heat transfer in porous media by lattice boltzmann method, American Institute of Physics Conference Series, 1434 (2012) 1891-1898.
DOI: 10.1063/1.4707127
Google Scholar
[22]
X. Li, J. Chen, M. Xu, X. Huai, F. Xin, J. Cai, Lattice Boltzmann simulation of catalytic reaction in porous media with buoyancy, Applied Thermal Eng. 70 (2014) 586-592.
DOI: 10.1016/j.applthermaleng.2014.04.034
Google Scholar
[23]
M. Sahraoui, M. Kaviany, Direct simulation vs. volume-averaged treatment of adiabatic, premixed flame in a porous medium, Int. J. Heat Mass Transfer 37 (1994) 2817-2834.
DOI: 10.1016/0017-9310(94)90338-7
Google Scholar
[24]
E.J. Braga, M.J.S. de Lemos, Laminar natural convection in cavities filled with circular and square rods, Int. Commun. Heat Mass Transfer 32 (2005) 1289-1297.
DOI: 10.1016/j.icheatmasstransfer.2005.07.014
Google Scholar
[25]
A.A. Alshare, P.J. Strykowski, T.W. Simon, Modeling of unsteady and steady fluid flow, heat transfer and dispersion in porous media using unit cell scale, Int. J. Heat Mass Transfer 53 (2010) 2294-2310.
DOI: 10.1016/j.ijheatmasstransfer.2009.11.001
Google Scholar
[26]
S. Haussener, P. Coray, W. Lipiński, P. Wyss, A. Steinfeld, Tomography-based heat and mass transfer characterization of reticulate porous ceramics for high-temperature processing, J. Heat Transfer 132 (2010) 023305.
DOI: 10.1115/1.4000226
Google Scholar
[27]
A. Kopanidis, A. Theodorakakos, E. Gavaises, D. Bouris, 3D numerical simulation of flow and conjugate heat transfer through a pore scale model of high porosity open cell metal foam, Int. J. Heat Mass Transfer 53 (2010) 2539-2550.
DOI: 10.1016/j.ijheatmasstransfer.2009.12.067
Google Scholar
[28]
S. Palle, S. Aliabadi, Direct simulation of structured wall bounded packed beds using hybrid FE/FV methods, Computers Fluids 88 (2013) 730-742.
DOI: 10.1016/j.compfluid.2013.05.012
Google Scholar
[29]
P. Ranut, E. Nobile, L. Mancini, High resolution microtomography-based CFD simulation of flow and heat transfer in aluminum metal foams, Applied Thermal Eng. 69 (2014) 230-240.
DOI: 10.1016/j.applthermaleng.2013.11.056
Google Scholar
[30]
R. Mittal, G. Iaccarino, Immersed boundary methods, Annual Review Fluid Mechanics 37 (2005) 239-261.
DOI: 10.1146/annurev.fluid.37.061903.175743
Google Scholar
[31]
C.S. Peskin, Flow patterns around heart valves: A numerical method, J. Computational Phys. 10(1972) 252-271.
DOI: 10.1016/0021-9991(72)90065-4
Google Scholar
[32]
C.S. Peskin, The immersed boundary method, Acta Numerica 11 (2002) 479-517.
DOI: 10.1017/s0962492902000077
Google Scholar
[33]
T. Ye, R. Mittal, H.S. Udaykumar, W. Shyy, An accurate Cartesian grid method for viscous incompressible flows with complex immersed boundaries, J. Computational Phys. 156 (1999) 209-240.
DOI: 10.1006/jcph.1999.6356
Google Scholar
[34]
E.A. Fadlun, R. Verzicco, P. Orlandi, J. Mohd-Yusof, Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations, J. Computational Phys. 161 (2000) 35–60.
DOI: 10.1006/jcph.2000.6484
Google Scholar
[35]
H.S. Udaykumar, R. Mittal, P. Rampunggoon, A. Khanna, A sharp interface Cartesian grid method for simulating flows with complex moving boundaries, J. Computational Phys. 174 (2001) 345–380.
DOI: 10.1006/jcph.2001.6916
Google Scholar
[36]
J. Kim, D. Kim, H. Choi, An immersed-boundary finite-volume method for simulations of flow in complex geometries, J. Computational Phys. 171 (2001) 132-150.
DOI: 10.1006/jcph.2001.6778
Google Scholar
[37]
R. Ghias, R. Mittal, H. Dong, A sharp interface immersed boundary method for compressible viscous flows, J. Computational Phys. 225 (2007) 528–553.
DOI: 10.1016/j.jcp.2006.12.007
Google Scholar
[38]
P.J.S.A. Ferreira de Sousa, J.C.F. Pereira, J.J. Allen, Two dimensional compact finite difference immersed boundary method, Int. J. Numerical Methods Fluids 65 (2011) 609-624.
DOI: 10.1002/fld.2199
Google Scholar
[39]
W.P. Breugem, B.J. Boersma, Direct numerical simulations of turbulent flow over a permeable wall using a direct and a continuum approach, Phys. Fluids 17 (2005) 025103.
DOI: 10.1063/1.1835771
Google Scholar
[40]
D.J. Lopez Penha, B.J. Geurts, S. Stolz, M. Nordlund, Computing the apparent permeability of an array of staggered square rods using volume-penalization, Computers Fluids 51 (2011) 157-173.
DOI: 10.1016/j.compfluid.2011.08.011
Google Scholar
[41]
L. Ghazaryan, D.J. Lopez Penha, S. Stolz, A.K. Kuczaj, B.J. Geurts, No-slip consistent immersed boundary particle tracking to simulate impaction filtration in porous media, Int. J. Numerical Methods Fluids 73 (2013) 615-636.
DOI: 10.1002/fld.3815
Google Scholar
[42]
F. Ilinca, J. -F. Hétu, Solution of the flow around complex-shaped surfaces by an immersed boundary-body conformal enrichment method, Int. J. Numerical Methods Fluids 69 (2012) 824-841.
DOI: 10.1002/fld.2615
Google Scholar
[43]
P.K. Smolarkiewicz, C.L. Winter, Pores resolving simulation of Darcy flows, J. Computational Phys. 229 (2010) 3121-3133.
DOI: 10.1016/j.jcp.2009.12.031
Google Scholar
[44]
N.G. Deen, S.H.L. Kriebitzsch, M.A. van der Hoef, J.A.M. Kuipers, Direct numerical simulation of flow and heat transfer in dense fluid–particle systems, Chemical Eng. Sci. 81 (2012) 329-344.
DOI: 10.1016/j.ces.2012.06.055
Google Scholar
[45]
H. Tavassoli, S.H.L. Kriebitzsch, M.A. van der Hoef, E.A.J.F. Peters, J.A.M. Kuipers, Direct numerical simulation of particulate flow with heat transfer, Int. J. Multiphase Flow 57 (2013) 29-37.
DOI: 10.1016/j.ijmultiphaseflow.2013.06.009
Google Scholar
[46]
N.G. Deen, J.A.M. Kuipers, Direct numerical simulation of fluid flow accompanied by coupled mass and heat transfer in dense fluid-particle systems, Chemical Eng. Sci. 116 (2014) 645-656.
DOI: 10.1016/j.ces.2014.05.036
Google Scholar
[47]
S. Tenneti, B. Sun, R. Garg, S. Subramaniam, Role of fluid heating in dense gas–solid flow as revealed by particle-resolved direct numerical simulation, Int. J. Heat Mass Transfer 58 (2013) 471-479.
DOI: 10.1016/j.ijheatmasstransfer.2012.11.006
Google Scholar
[48]
Z. -G. Feng, S.G. Musong, Direct numerical simulation of heat and mass transfer of spheres in a fluidized bed, Powder Technology 262 (2014) 62-70.
DOI: 10.1016/j.powtec.2014.04.019
Google Scholar
[49]
J. Xia, K. Luo, J. Fan, A ghost-cell based high-order immersed boundary method for inter-phase heat transfer simulation, Int. J. Heat Mass Transfer 75 (2014) 302-312.
DOI: 10.1016/j.ijheatmasstransfer.2014.03.048
Google Scholar
[50]
B.J. Boersma, A 6th order staggered compact finite difference method for the incompressible Navier-Stokes and scalar transport equations, J. Computational Phys. 230 (2011) 4940-4954.
DOI: 10.1016/j.jcp.2011.03.014
Google Scholar
[51]
A. Brüger, B. Gustafsson, P. Lötstedt, J. Nilsson, High order accurate solution of the incompressible Navier–Stokes equations, J. Computational Phys. 203 (2005) 49-71.
DOI: 10.1016/j.jcp.2004.08.019
Google Scholar
[52]
R. Knikker, Study of a staggered fourth-order compact scheme for unsteady incompressible viscous flows, Int. J. Numerical Methods Fluids 59 (2009) 1063-1092.
DOI: 10.1002/fld.1854
Google Scholar
[53]
K.K.Q. Zhang, B. Shotorban, W.J. Minkowycz, F. Mashayek, A compact finite difference method on staggered grid for Navier–Stokes flows, Int. J. Numerical Methods Fluids 52 (2006) 867-881.
DOI: 10.1002/fld.1207
Google Scholar
[54]
K. Mahesh, A family of high order finite difference schemes with good spectral resolution, J. Computational Phys. 145 (1998) 332-358.
DOI: 10.1006/jcph.1998.6022
Google Scholar
[55]
B.J. Boersma, A staggered compact finite difference formulation for the compressible Navier–Stokes equations, J. Computational Phys. 208 (2005) 675-690.
DOI: 10.1016/j.jcp.2005.03.004
Google Scholar
[56]
J. Mohd-Yusof, Combined immersed boundaries/B–splines methods for simulations of flows in complex geometries, CTR Annual Research Briefs, NASA Ames/Stanford University, Stanford, 1997, pp.317-327.
Google Scholar
[57]
S. Nagarajan, S.K. Lele, J.H. Ferziger, A robust high-order compact method for large eddy simulation, J. Computational Phys. 191 (2003) 392-419.
DOI: 10.1016/s0021-9991(03)00322-x
Google Scholar
[58]
M. Breuer, J. Bernsdorf, T. Zeiser, F. Durst, Accurate computations of the laminar flow past a square cylinder based on two different methods: lattice-Boltzmann and finite-volume, Int. J. Heat Fluid Flow 21 (2000) 186-196.
DOI: 10.1016/s0142-727x(99)00081-8
Google Scholar
[59]
S.R. Kumar, A. Sharma, A. Agrawal, Simulation of flow around a row of square cylinders, J. Fluid Mechanics 606 (2008) 369-397.
DOI: 10.1017/s0022112008001924
Google Scholar
[60]
A. Sharma, V. Eswaran, Effect of channel confinement on the two-dimensional laminar flow and heat transfer across a square cylinder, Numerical Heat Transfer, Part A: Applications 47 (2004) 79-107.
DOI: 10.1080/10407780490520760
Google Scholar
[61]
A. Barletta, Local energy balance, specific heats and the Oberbeck-Boussinesq approximation, Int. J. Heat Mass Transfer 52 (2009) 5266-5270.
DOI: 10.1016/j.ijheatmasstransfer.2009.06.006
Google Scholar
[62]
S.K. Lele, Compact finite difference schemes with spectral-like resolution, J. Computational Phys. 103 (1992) 16–42.
DOI: 10.1016/0021-9991(92)90324-r
Google Scholar
[63]
P.J.S.A. Ferreira de Sousa, J.C.F. Pereira, Fourth- and tenth-order compact finite difference solutions of perturbed circular vortex flows, Int. J. Numerical Methods Fluids 49 (2005) 603-618.
DOI: 10.1002/fld.1017
Google Scholar
[64]
I. Malico, P.J.S.A. Ferreira de Sousa, Modeling the pore level fluid flow in porous media using the immersed boundary method, Numerical Analysis of Heat and Mass Transfer in Porous Media, Springer, Berlin Heidelberg, 2012, pp.229-251.
DOI: 10.1007/978-3-642-30532-0_9
Google Scholar
[65]
P.J. Roache, Verification of codes and calculations, AIAA J. 36 (1998) 696–702.
DOI: 10.2514/3.13882
Google Scholar
[66]
A. -K. Tornberg, B. Engquist, Numerical approximations of singular source terms in differential equations, J. Computational Phys. 200 (2004) 462–488.
DOI: 10.1016/j.jcp.2004.04.011
Google Scholar
[67]
P.J.S.A. Ferreira de Sousa, I. Malico, G. Fernandes, Numerical simulation of 2D flow through a packed bed of square cylinders, Defect Diffusion Forum 326 (2012) 725-730.
DOI: 10.4028/www.scientific.net/ddf.326-328.725
Google Scholar
[68]
P.J.S.A. Ferreira de Sousa, I. Malico, G. Fernandes, 2D flow in a wall-bounded porous médium, Defect Diffusion Forum 334 (2013) 359-364.
DOI: 10.4028/www.scientific.net/ddf.334-335.359
Google Scholar
[69]
A. Okajima, Strouhal numbers of rectangular cylinders, J. Fluid Mechanics 123 (1982) 379-398.
DOI: 10.1017/s0022112082003115
Google Scholar
[70]
K.M. Kelkar, S.V. Patankar, Numerical prediction of vortex shedding behind a square cylinder, Int. J. Numerical Methods Fluids 14 (1992) 327-341.
DOI: 10.1002/fld.1650140306
Google Scholar